UAA Faculty Senate Academic Assessment Committee
Agenda: December 1, 2017
11:00am - 12:30pm, ADM 204

Skype for Business: Join online at https://meet.uaa.alaska.edu/macarlson/I6FZBWWQ
or Call 786-6755 or 1-844-368-7867 and enter Conference ID 642461

1. Approval of Agenda

2. Approval of Minutes (pgs. 3-5)

3. Chairs Report and Discussion

4. Vice Provost Report and Discussion
 a. Annual Assessment Overview (pgs. 6-7)

5. Outreach to the Colleges/Programs/Campuses Update – LIB 307 tentatively held
 February 2nd and March 2nd

6. Assessment Website
 a. Assessment reporting job aid (pgs. 8-9)
 b. Webpage flowchart (pgs. 10-13)
 c. Possible button organization (pgs. 14-15)

7. AAC&U Value Institute http://valueinstituteassessment.org/ (pgs. 16-17)

8. 2018 Annual Academic Assessment Seminar
 a. National Institute for Learning Outcomes Assessment
 http://www.learningoutcomesassessment.org/

9. Annual Academic Assessment Survey section on success stories (pgs. 18-27)

10. Assessment Plan Reviews
 Assessment plan attached for your review. Link to the curriculum provided below.
 • Diagnostic Medical Sonography AAS, Program Representative: Ryan Parnell, Term Instructor, Ultrasonography – Last AAC review 1/27/12 (pgs. 28-33)
 https://nextcatalog.uaa.alaska.edu/programadmin/?code=DGMS-AAS

11. Informational Assessment Plan Changes
 • Computer Science BA/BS – Last AAC review 10/17/14 (pgs. 34-55)
 https://nextcatalog.uaa.alaska.edu/programadmin/?code=CSCI-BA
 https://nextcatalog.uaa.alaska.edu/programadmin/?code=CSCI-BS

12. Upcoming Plans
13. Information Items

- General Education Assessment Workshops and Forums (pg. 56)

Committee Members

<table>
<thead>
<tr>
<th>Committee Member</th>
<th>College/Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bill Myers, CAS</td>
<td>CAS</td>
</tr>
<tr>
<td>Christina McDowell, CBPP</td>
<td>CBPP</td>
</tr>
<tr>
<td>Jonathan Bartels, COE</td>
<td>COE</td>
</tr>
<tr>
<td>Thia Falcone, Kodiak</td>
<td></td>
</tr>
<tr>
<td>Craig Titus, PWSC</td>
<td></td>
</tr>
<tr>
<td>Jeff Hollingsworth, CoEng</td>
<td></td>
</tr>
<tr>
<td>Jennifer Brock, Faculty Senate</td>
<td></td>
</tr>
<tr>
<td>Kathi Trawver, COH, Co-Chair</td>
<td></td>
</tr>
<tr>
<td>Rachel Graham, Faculty Senate, Co-Chair</td>
<td></td>
</tr>
<tr>
<td>Albert Grant, CTC</td>
<td></td>
</tr>
<tr>
<td>Vacant, Faculty Senate</td>
<td></td>
</tr>
<tr>
<td>Vacant, Faculty Senate</td>
<td></td>
</tr>
<tr>
<td>Deborah Mole, Library</td>
<td>Library</td>
</tr>
<tr>
<td>Vacant, Faculty Senate</td>
<td></td>
</tr>
<tr>
<td>Holly Bell, Mat-Su</td>
<td></td>
</tr>
<tr>
<td>Susan Kalina, OAA (ex officio)</td>
<td></td>
</tr>
</tbody>
</table>

X = Attendance

Scheduled Meeting Dates Academic Year 2018

First and third Fridays unless otherwise noted

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/25</td>
<td>11:00-12:30p</td>
<td>ADM 204</td>
</tr>
<tr>
<td>9/1</td>
<td>11:00-12:30p</td>
<td>ADM 204</td>
</tr>
<tr>
<td>9/8</td>
<td>9:00-12:30p</td>
<td>LIB 307</td>
</tr>
<tr>
<td>9/15</td>
<td>11:00-12:30p</td>
<td>Cancelled</td>
</tr>
<tr>
<td>10/6</td>
<td>11:00-12:30p</td>
<td>ADM 204</td>
</tr>
<tr>
<td>10/20</td>
<td>11:00-12:30p</td>
<td>ADM 204</td>
</tr>
<tr>
<td>11/3</td>
<td>11:00-12:30p</td>
<td>RH 303</td>
</tr>
<tr>
<td>11/17</td>
<td>11:00-12:30p</td>
<td>ADM 204</td>
</tr>
<tr>
<td>12/1</td>
<td>11:00-12:30p</td>
<td>ADM 204</td>
</tr>
<tr>
<td>12/15</td>
<td>11:00-12:30p</td>
<td>ADM 204</td>
</tr>
<tr>
<td>1/19</td>
<td>11:00-12:30p</td>
<td>ADM 204</td>
</tr>
<tr>
<td>2/2</td>
<td>11:00-12:30p</td>
<td>ADM 204 (or LIB 307)</td>
</tr>
<tr>
<td>2/16</td>
<td>11:00-12:30p</td>
<td>ADM 204</td>
</tr>
<tr>
<td>3/2</td>
<td>11:00-12:30p</td>
<td>RH 303 (or LIB 307)</td>
</tr>
<tr>
<td>3/16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/6</td>
<td>11:00-12:30p</td>
<td>ADM 204</td>
</tr>
<tr>
<td>4/20</td>
<td>11:00-12:30p</td>
<td>ADM 204</td>
</tr>
<tr>
<td>5/4</td>
<td>11:00-12:30p</td>
<td>ADM 204</td>
</tr>
</tbody>
</table>
UAA Faculty Senate Academic Assessment Committee

Summary: November 17, 2017
11:00am - 12:30pm, ADM 204

Skype for Business: Join online at https://meet.uaa.alaska.edu/macarlson/I6FZBWWQ
or Call 786-6755 or 1-844-368-7867 and enter Conference ID 642461

1. Approval of Agenda – approved

2. Approval of Minutes (pgs. 4-6) – approved

3. Chair’s Discussion
 • Annual Academic Assessment Survey section on success stories (pgs.7-16)
 i. The Committee discussed revising Question 20 to specify all teaching faculty and add descriptions such as data collection, discussion, decision making.
 ii. An optional question would collect stories about closing the loop: “Would you share a success story based on your assessment findings/data that has resulted in improved student learning and achievement?”
 • Outreach to the colleges/programs/campuses:
 i. In lieu of the regular meeting on January 19th, the Committee discussed a lunch and listening session to highlight the AAC’s accomplishments, obtain productive feedback, and build community. Academic Affairs will look into budget and location.

4. Vice Provost report and discussion
 • AAC&U Value Institute http://valueinstituteassessment.org/ (pgs. 17-18)
 o The Value Institute could be a great opportunity for UAA, if we are clear on what we want to gain from it. The AAC was asked to review and provide feedback in a timely manner, since the registration deadline is January 29th. If the AAC is interested, it would be good to have the request come from the Committee.
 • Assessment website
 o The AAC reviewed the draft assessment reporting job aid, webpage flow chart discussion, and possible button organization. Discussion will continue in future meetings.
 • 2018 Annual Academic Assessment Seminar
 o National Institute for Learning Outcomes Assessment http://www.learningoutcomesassessment.org/
 o Planning for the 2018 Assessment Seminar has begun. What do we want every student to know and be able to articulate? The Committee discussed the intersectionality of assessment, curriculum, and pedagogy, and Susan suggested they consider NILOA as a resource.
5. **Assessment Plan Reviews** – *none*

6. **Informational Assessment Plan Changes**
 - Children’s Mental Health GC – Last AAC review 5/5/17 (pgs. 21-34)
 https://nextcatalog.uaa.alaska.edu/programadmin/?code=CMHL-GRCERT
 - Economics BA – Last AAC review 5/5/17 (pgs. 35-46)
 https://nextcatalog.uaa.alaska.edu/programadmin/?code=ECON-BA
 - Economics BBA – Last AAC review 3/3/17 (pgs. 47-63)
 https://nextcatalog.uaa.alaska.edu/programadmin/?code=ECON-BBA
 - Educational Leadership MEd and Educational Leadership: Principal GC – Last AAC review 4/15/16 (pgs. 64-84)
 https://nextcatalog.uaa.alaska.edu/programadmin/?code=EDLD-MED
 https://nextcatalog.uaa.alaska.edu/programadmin/?code=TCPR-GRCERT
 - English BA – Last AAC review waived 2013, program plans to revise plan in AY19 (pgs. 85-92)
 https://nextcatalog.uaa.alaska.edu/programadmin/?code=ENGL-BA
 - Environment and Society BS – Last AAC review 2/26/15 (pgs. 93-109)
 https://nextcatalog.uaa.alaska.edu/programadmin/?code=ENSO-BS
 - Phlebotomist OEC – Last AAC review 3/6/15 (pgs. 110-127)
 https://nextcatalog.uaa.alaska.edu/programadmin/?code=PHLE-OECERT

7. **Upcoming Plans**

8. **Information Items**
 - General Education Assessment Workshops and Forums (pg. 128)

Committee Members

<table>
<thead>
<tr>
<th>X</th>
<th>Bill Myers, CAS</th>
<th>X</th>
<th>Scott Downing, KPC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Christina McDowell, CBPP</td>
<td>X</td>
<td>Thia Falcone, Kodiak</td>
</tr>
<tr>
<td></td>
<td>Jonathan Bartels, COE</td>
<td></td>
<td>Craig Titus, PWSC</td>
</tr>
<tr>
<td>X</td>
<td>Jeff Hollingsworth, CoEng</td>
<td>X</td>
<td>Jennifer Brock, Faculty Senate</td>
</tr>
<tr>
<td>X</td>
<td>Kathi Trawver, COH, Co-Chair</td>
<td>X</td>
<td>Rachel Graham, Faculty Senate, Co-Chair</td>
</tr>
<tr>
<td>X</td>
<td>Albert Grant, CTC</td>
<td></td>
<td>Vacant, Faculty Senate</td>
</tr>
<tr>
<td>X</td>
<td>Deborah Mole, Library</td>
<td></td>
<td>Vacant, Faculty Senate</td>
</tr>
<tr>
<td>X</td>
<td>Holly Bell, Mat-Su Annie Horning, MatSu</td>
<td>X</td>
<td>Susan Kalina, OAA (ex officio)</td>
</tr>
</tbody>
</table>
Academic Assessment Committee Agenda 12/1/17

Scheduled Meeting Dates Academic Year 2018
(First and third Fridays unless otherwise noted)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/25</td>
<td>11:00-12:30p</td>
<td>ADM 204</td>
</tr>
<tr>
<td>9/1</td>
<td>11:00-12:30p</td>
<td>ADM 204</td>
</tr>
<tr>
<td>9/8</td>
<td>Assessment Seminar 9:00-12:30</td>
<td>LIB 307</td>
</tr>
<tr>
<td>9/15</td>
<td>11:00-12:30p</td>
<td>Cancelled</td>
</tr>
<tr>
<td>10/6</td>
<td>11:00-12:30p</td>
<td>ADM 204</td>
</tr>
<tr>
<td>10/20</td>
<td>11:00-12:30p</td>
<td>ADM 204</td>
</tr>
<tr>
<td>11/3</td>
<td>11:00-12:30p</td>
<td>RH 303</td>
</tr>
<tr>
<td>11/17</td>
<td>11:00-12:30p</td>
<td>ADM 204</td>
</tr>
<tr>
<td>12/1</td>
<td>11:00-12:30p</td>
<td>ADM 204</td>
</tr>
<tr>
<td>12/15</td>
<td>11:00-12:30p</td>
<td>ADM 204</td>
</tr>
<tr>
<td>1/19</td>
<td>11:00-12:30p</td>
<td>ADM 204</td>
</tr>
<tr>
<td>2/2</td>
<td>11:00-12:30p</td>
<td>ADM 204</td>
</tr>
<tr>
<td>2/16</td>
<td>11:00-12:30p</td>
<td>ADM 204</td>
</tr>
<tr>
<td>3/2</td>
<td>11:00-12:30p</td>
<td>RH 303</td>
</tr>
<tr>
<td>3/6</td>
<td>Holiday</td>
<td>3/16</td>
</tr>
<tr>
<td>4/6</td>
<td>11:00-12:30p</td>
<td>ADM 204</td>
</tr>
<tr>
<td>4/20</td>
<td>11:00-12:30p</td>
<td>ADM 204</td>
</tr>
<tr>
<td>5/4</td>
<td>11:00-12:30p</td>
<td>ADM 204</td>
</tr>
</tbody>
</table>

Note: X = Attendance
Peer Leadership in Program Improvement

The Academic Assessment Committee (AAC) is an elected and representative body of the Faculty Senate. It was created to provide peer leadership, support, and review and to ensure that the ultimate beneficiaries of academic assessment are the students in UAA programs. The AAC supports faculty through review of periodic submissions, feedback on those submissions, and communication of shared expectations in academic assessment. It also serves as an institutional forum for the exchange of ideas, information, and advice about academic assessment methods and practices.

In academic year (AY) 2015 the AAC focused its efforts on the second annual Academic Assessment Seminar, the spring assessment workshop series, the new annual report template for colleges and campuses, a research project examining the assessment structures within the colleges and campuses, and a revision of the Assessment Handbook.

Annual Academic Assessment Seminar

Over 80 faculty and staff attended the 2014 Annual Academic Assessment Seminar. Keynote speaker Dr. Susan Hatfield, Senior Scholar at the Higher Learning Commission, highlighted a shift away from a focus on a culture of “assessment” to a culture of learning. The seminar included a workshop on building a sustainable GER assessment process and a UAA best practices session. The 2015 Academic Assessment Seminar, Mapping Student Success, will be held on September 11, 2015 and will feature Dr. Janice Denton, Project Mentor at the Higher Learning Commission.

Academic Assessment Workshops

The AAC spring workshop series covered: writing effective program mission statements and program student learning outcomes, norming academic assessment rubrics, and incorporating ePortfolios into program level assessment—opportunities and challenges.

Assessment on Community Campuses

Community campus faculty serve on institutional committees, but are equally active on their campuses. Once again, Mat-Su College leads the way in hosting their Assessment Summits. Mat-Su’s keynote speaker, Dr. Janice Denton, was invited back as the featured speaker for UAA’s Annual Academic Assessment Seminar.

Last year, Prince William Sound College faculty participated as guests in UAA’s assessment processes. With final approvals to join UAA’s institutional accreditation, the campus will integrate into UAA’s larger institutional assessment efforts in the coming year.
National Faculty Development Opportunities

OAA supports colleges and programs in advancing academic assessment through faculty development. In addition to funding assessment leaders to attend discipline-specific conferences, this past year Jackie Cason, Shawnalee Whitney and Scott Downing attend the national conference From Mission to Action to Evidence: Empowering and Inclusive General Education Programs hosted by the American Association of Colleges and Universities (AAC&U). OAA also helped support Co-Chair of the AAC Brian Bennett’s attendance at the Association for the Assessment of Learning in Higher Education’s (AALHE) annual conference.

All-Time-High Response on Annual Academic Assessment Survey

The Annual Academic Assessment Survey enables UAA to highlight student achievement of program student learning outcomes and to recognize faculty efforts toward improving their programs. All active programs complete the online survey, which collects summary assessment data and provides evidence of ongoing assessment activity. The 2015 Annual Academic Assessment Survey had a response rate of 95%. Over 75% of the survey respondents reported making program improvements based on their assessment results, with the majority of changes in the areas of course-level curriculum, teaching methods, pre-requisites, and advising. UAA faculty continue to be committed to sustaining quality academic programs and to supporting student success.

Faculty Senate Approves GER Assessment Task Force Final Recommendations

Over the last three years, the General Education Requirements Assessment Task Force (GERA) researched national best practices in general education assessment and engaged the institution in campus-wide dialogues about general education assessment at UAA. The resulting assessment plan incorporates national best practices as well as input from a series of UAA workshops and open forums, a faculty survey, and assessment pilot projects. It takes a broad view of general education goals as spanning the full academic career of a student. The plan was reviewed by the Academic Assessment Committee on May 1, 2015.

The GER Assessment Task Force submitted its final recommendations, including the creation of a General Education Requirements director, to the Faculty Senate in May 2015; these passed unanimously.

For more information visit the following websites:
Office of Undergraduate Academic Affairs: www.uaa.alaska.edu/undergraduate-academic-affairs/AcademicAssessment/index.cfm
Academic Assessment Committee: www.uaa.alaska.edu/governance/academic_assessment_committee/index.cfm
General Education Requirements Assessment Task Force: www.uaa.alaska.edu/governance/ger-assessment-task-force/index.cfm

AY15 GERA Membership

Bill Myers, Chair
Jacqueline Cason
Herminia Din
Kyle Hampton
Andrew Metzger
Deborah Mole
Kathryn Ohle
Megan Ossiander-Gobeille
Brian Partridge
Sandra Pence
Shawnalee Whitney
Susan Kalina (ex-officio)
Assessment Reporting
Job Aid

Dates to Remember

<table>
<thead>
<tr>
<th>Assessment Survey due</th>
<th>June 15th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment Report due</td>
<td>October 15th</td>
</tr>
</tbody>
</table>

Assessment Survey

A short Assessment Survey is due online for the ending academic year by June 15th. The survey can be accessed going to the following website, logging in, and scrolling to the bottom of the page:

https://ir-reports.uaa.alaska.edu/

Assessment Reports

The Assessment Report template can be found at the following website:

https://www.uaa.alaska.edu/about/governance/academic-assessment-committee/assessment-handbook-and-templates.cshtml

Assessment Reports are due by October 15th for the previous year. They are to be submitted to the Anchorage Sharepoint site. Directions for each are below.

Anchorage

A copy of the Assessment Plan and Annual Assessment Report need to reside on Anchorage’s Sharepoint site. Assessment Plans should be submitted to Megan Carlson to be put onto the site once they have been reviewed by the Faculty Senate Assessment Committee.

To upload your Annual Assessment Report login to the UAA Institutional Research site at:

https://ir-reports.uaa.alaska.edu/Pages/Default.aspx

1) At the top of the page click the dropdown under Academic Programs, select Assessment.

2) On the left-hand side of the page, select the Anchorage academic department your degree program is aligned with.
3) On the right-hand side of the page, select the folder for your degree program. *Note: I’ve found sometimes I have to refresh the page to get it to go to the next level.

4) Also on the right side, click the folder for the most recent academic year.

5) Continuing on the right side, click the report folder.

6) To the right click the green text labeled “new document” to upload your Assessment Report. *Note: There are naming conventions for the files that must be followed [Year, “PRGR”, Degree program, Level (AAS, BBA, MBA, etc), College, Campus].
Organizational Charts for Assessment

Draft 2
AAC – December 1, 2017
Assessment at UAA

Mission Fulfillment
- UAA Administration and Faculty measure Core Themes according to institutional assessment plan with (this is a list – see self study – include appendix??)
 - Results reported in Annual Assessment Survey??, Annual Assessment Reports?? and, UAA Self-Study???

Degrees (Univ. Level)
- UAA Administration and Faculty from multiple programs measure Program Student Learning Outcomes (PSLOs) (i.e., BA/BS (GER), AA, & AAS) with student artifacts
 - Results reported in Annual Program Assessment Report

Academic Programs
- Departments (or Programs?) measure (course effectiveness?) and Program Student Learning Outcomes (PSLOs) according to assessment plans with student artifacts, National Assessments Results reported in Assessment Survey Summary, and Annual Report

Students
- Faculty measure Course Level Student Learning Outcomes with student artifacts (i.e., samples)
1. Complete Office of Academic Affairs (OAA) Assessment Survey on SharePoint (Due June 15th) – link to survey?

1. Prepare Assessment Report on most recent Academic Year (AY)

1. Submit Assessment Report to SharePoint (Due October 15th) – link?

Did you make changes to a program?
See Other Chart (next slide)
Did your program make changes to their Assessment Plan OR Program Student Learning Outcomes (PSLOs) this year?

NO

1. Collect and Compile Data according to plan
2. Complete Annual Assessment Survey – link (Due June 15th)
3. Complete Annual Assessment Report – link (Due October 15th)
4. Meet with Program Faculty to discuss findings and report
5. Make decisions – What is working? Not working? What will stay the same? Change?

YES

1. Update Program Assessment Plan AND/OR PSLOs
2. Discuss with College-level assessment committee
3. Submit to CIM System
 a. Depending on the changes made you may be contacted by Academic Affairs to go through a review process which could include visits to the Academic Assessment Committee (AAC), the Undergraduate Academic Board (UAB) or Graduate Academic Board (GAB), and approval through Faculty Senate
4. Begin implementing new plan
Possible button organization:

(BUTTON) Processes & Procedures:
- Dates and Deadlines (master)
- Job Aid
- Assessment Handbook
- Making Changes?? (Flow chart – submit what to whom by when)

(BUTTON) Student Learning Outcomes:
- Course (CIM)
- Program (Catalog)
- Degree (GER/AA/AAS) (Catalog)

(BUTTON) Assessment Plans:
- Program Template (in resources too?)
- Existing Plans (IR site)
- FAQ and/or Making Changes (here too?)
- Degrees
 - Are these plans in IR too? Or would we link straight to the documents?

(BUTTON) Reporting Processes:
- Survey – wording (value statement) can include annual deadline and who is responsible for submitting (one per program – no matter the campus)
 - Preview of the survey questions
 - Access the survey
 - Survey FAQ
- Annual Reports - wording (value statement) can include annual deadline and who is responsible for submitting (one per program – no matter the campus)
 - Submitting Program Report (IR-Reports)

(BUTTON) Results/Reports:
- IR Reports – who can access these, how are they organized
- Survey Summary Results Report
- AA Report
- GER Report
Resources and Information on Assistance (wording here needs work – should this go closer to the top instead of the bottom??):

 Faculty Senate Academic Assessment Committee:
 Members
 Meeting Times & Dates
 Agendas & Meeting Summaries?
 Senate Reports??
 General Education Advisory Committee
 Members
 How-To Documents or Videos: searching for/downloading CCGs, searching for assessment plans, submitting survey and report, searching for assessment results – these could also go individually in their appropriate places up above.

 (BUTTON??) Seminars & Workshops (could maybe fit into the resources somehow??):
 AAC Seminars (arranged by year?)
 Upcoming (schedule)
 Past
 Gen Ed Seminars
 Upcoming (schedule)
 Past
Announcing the Most Comprehensive Resource for Student Learning Assessment

AAC&U is excited to announce the launch of the VALUE Institute in partnership with Indiana University’s Center for Postsecondary Research. Institutions are invited to participate in the VALUE Institute, a continuing resource for higher education institutions and providers to document, report, and use learning outcomes evidence to improve student success in college.

Join Today

FAQ

The VALUE Institute enables any higher education institution, department, program, state, consortium, or provider to utilize the VALUE rubrics approach to assessment by collecting and uploading samples of student work to a digital repository and having the work scored by certified VALUE Institute faculty scorers for external validation of institutional learning assessment. The VALUE Institute assessment results will provide participating institutions with actionable information about students’ learning and support capacity building for faculty, institutions, and policy makers on how to use VALUE evidence to support student success and effective pedagogy.

The VALUE Institute, in tandem with IU CPR’s National Survey of Student Engagement (NSSE), will create the country’s most comprehensive resource for direct and indirect evidence of student learning. This effort takes to a nationwide scale the initial work done in collaboration with the State Higher Education Executive Officers (SHEEO) association’s Multi-State Collaborative to Advance Quality Student Learning (MSC), the Minnesota Collaborative, the Great Lakes Colleges Association (GLCA) Collaborative, and nearly one hundred two- and four-year colleges and universities.

The VALUE Institute will provide evidence that allows faculty, institutional leaders, accreditors, policy makers, and even students themselves to assess and improve the levels of achievement on a set of cross-cutting competencies important for all disciplines.
We are thrilled to invite you to participate in the inaugural year of the VALUE Institute, and we encourage you to register now and reserve your spot for spring data collection and summer scoring!

For additional information and FAQs regarding VALUE Institute services, fees, and registration, visit http://valueinstituteassessment.org.

For questions, contact the VALUE Institute staff at 812-856-5824 or info@valueinstituteassessment.org.
2017 Annual Academic Assessment Survey

Q1 The Faculty Senate Academic Assessment Committee (AAC) is committed to a vision of assessment that leads to continuous program improvements and benefits students. The Annual Academic Assessment Survey enables the AAC to analyze assessment across the institution and to respond to Statewide, BOR, legislative, and NWCCU requests for information about overall student achievement of program learning outcomes. We thank you for your continued support of and participation in this annual activity.

Q2 Please enter your full name.

Q3 Please enter your title or position.

Q4 In the case that the Faculty Senate Academic Assessment Committee or the Office of Academic Affairs needs to contact you or a designee to discuss any of these survey responses, please provide the appropriate name(s) and contact information.

Q5 Please select the college you are reporting for.
 - College of Arts and Sciences
 - College of Business and Public Policy
 - College of Education
 - College of Engineering
 - Community and Technical College
 - Kenai Peninsula College
 - Kodiak College
 - Matanuska-Susitna College
 - Prince William Sound College
 - General Education
Display This Question:
If What college are you reporting for? College of Arts and Sciences Is Selected

Q6 Please select the degree program you are submitting this survey for.
- Anthropology, BA / Anthropology, BS
- Anthropology, MA
- Applied Ethics, UC
- Art, BA / Art, BFA
- Biological Sciences, BA / Biological Sciences, BS
- Biological Sciences, MS
- Chemistry, BS
- Children's Mental Health, GCRT
- Clinical Psychology, MS
- Clinical-Community Psychology, PHD
- Creative Writing & Literary Arts, MFA
- English, BA
- English, MA
- Environment & Society, BA / Environment & Society, BS
- General Program, AA
- Geological Science, BS
- History, BA
- International Studies, BA
- Journalism & Public Comm, BA
- Languages, BA
- Liberal Studies, BLS
- Mathematics, BA / Mathematics, BS
- Music, BA Music, BM
- Natural Sciences, BS
- Philosophy, BA
- Political Science, BA
- Psychology, BA / Psychology, BS
- Sociology, BA / Sociology, BS
- Theatre, BA
Display This Question:
If What college are you reporting for? College of Business and Public Policy Is Selected
Q7 Please select the degree program you are submitting this survey for.
- Accounting, AAS
- Accounting, BBA
- Business Computer Info Systems, AAS
- Economics, BA
- Economics, BBA
- Finance, BBA
- General Management, MBA
- Global Log Supply Chain Mgmt, BBA
- Global Supply Chain Mgmt, MS
- Logistics & Supply Chain Ops, AAS / Logistics & Supply Chain Ops, UC / Logistics & Supply Chain Ops, OEC
- Management, BBA
- Management Information Systems, BBA
- Marketing, BBA
- Public Administration, MPA
- Retail Management, UC
- Small Business Administration, AAS

Display This Question:
If What college are you reporting for? College of Education Is Selected
Q8 Please select the degree program you are submitting this survey for.
- Counselor Education, GCRT
- Counselor Education, MED
- Early Childhood Development, AAS / Early Childhood Development, UC
- Early Childhood Education, BA / Early Childhood, PBCT
- Early Childhood Spec Educ, MED
- Education, MAT
- Educational Leadership, MED / Ed Leadership: Principal, GCRT
- Ed Leadership: Superintendent, GCRT
- Elementary Education, BA / Elementary Education (K-6), PBCT
- Language Education, GCRT
- Special Education, MED / Special Education, GCRT
- Speech Language Pathology, PBCT
- Teaching and Learning, MED
If What college are you reporting for? School of Engineering Is Selected

Q9 Please select the degree program you are submitting this survey for.

- Appl Environ Science & Tech, MO / Appl Environ Science & Tech, MS
- Arctic Engineering, MS
- Civil Engineering, BS
- Civil Engineering, MS / Civil Engineering, MCE
- Computer Science, BA / Computer Science, BS
- Computer Systems Engineering, BS
- Electrical Engineering, BS
- Engineering Management, MS / Science Management, MS
- Environmental Reg & Permitting, GCRT
- Geomatics, BS Geomatics, AAS / Geographic Information Sys, UC
- Mechanical Engineering, BS
- Mechanical Engineering, MS
- Project Management, MS
Display This Question:

If What college are you reporting for? College of Health Is Selected

Q10 Please select the degree program you are submitting this survey for.

- Advanced Human Service Systems, GCRT
- Children's Behavioral Health, OEC
- Civic Engagement, UC
- Clinical Assistant, OEC
- Dental Assisting, AAS / Dental Assisting, UC
- Dental Hygiene, AAS
- Dental Hygiene, BS
- Diagnostic Medical Sonography, AAS
- Dietetic Internship, GCRT
- Dietetics, BS
- Fire & Emergency Services Tech, AAS
- Fitness Leadership, OEC
- Health Sciences, BS
- Human Services, AAS / Human Services, BHS Conflict Resolution, OEC
- Justice, BA
- Legal Studies, BA / Paralegal Studies, AAS / Legal Nurse Consultant Paralegal, UC / Paralegal Studies, PBCT
- Limited Radiography, OEC
- Medical Assisting, AAS
- Medical Lab Technology, AAS
- Medical Laboratory Science, BS
- Medical Office Coding, OEC
- Nursing, AAS
- Nursing Practice, DNP
- Nursing Science, BS
- Nursing Science, MS / Family Nurse Practitioner, GCRT / Nursing Education, GCRT / Psychia & Mentl Hlth Nur Pract, GCRT
- Nutrition, BS
- Outdoor Leadership, OEC
- Paralegal Studies, UC
- Pharmacy Technology, OEC
- Phlebotomist, OEC
- Physical Education, BS
- Physical Therapist Assistant, AAS
- Public Health Practice, MPH
- Radiologic Technology, AAS
- Social Work, BSW
- Social Work, MSW
Display This Question:
If What college are you reporting for? Community and Technical College Is Selected

Q11 Please select the degree program you are submitting this survey for.

- Advanced Welding, OEC
- Air Traffic Control, AAS
- Applied Technologies Leadership, BS
- Apprenticeship Technology, AAS
- Archit & Engr Technology, AAS / Architectural Technology, UC / Civil Technology, UC / Mech & Elect Technology, UC / Structural Technology, UC / CAD for Building Construction, OEC
- Automotive Technology, AAS / Automotive Technology, UC / Brakes, Suspension, Align, OEC / Electrical, OEC
- Aviation Administration, AAS
- Aviation Maint Technology, AAS
- Aviation Maint Technology - Airframe, UC
- Aviation Maint Technology - Powerplant, UC
- Aviation Technology, BS - Management Emphasis
- Aviation Technology, BS - Professional Piloting Emphasis
- Career & Technical Education, GCRT
- Career & Technical Education, MS
- Computer Info & Office Systems, AAS / Corporate Specified Skills, OEC / Office Foundations, OEC / Office Support, OEC
- Computer & Networking Tech, AAS / Computer & Networking Tech, UC / Cisco Cert Network Associate, OEC
- Construction Management, AAS
- Construction Management, BS
- Culinary Arts, AAS
- Diesel Power Technology, AAS Diesel Power Technology, UC
- Hospitality Restaurant Mgt, BA
- Nondestructive Testing, OEC
- Occupational Safety & Health, AAS
- Professional Piloting, AAS
- Welding, OEC
- Welding & Nondestructive Test Tech, AAS
If What college are you reporting for? Kenai Peninsula College Is Selected

Q12 Please select the degree program you are submitting this survey for.

- Computer Electronics, AAS
- Computer Info Office Systems, AAS / Office Foundations, OEC / Office Support, OEC
- Corrections, UC / Corrections, OEC
- Digital Art, AAS
- General Business, AAS
- General Program, AA
- Industrial Process Instrumentation, AAS
- Paramedical Tech, AAS
- Process Technology, AAS / Petroleum Technology, UC
- Small Business Management, UC
- Welding Technology, UC

If What college are you reporting for? Kodiak College Is Selected

Q13 Please select the degree program you are submitting this survey for.

- Accounting, AAS
- Alutiiq Language, OEC
- Computer Info Office Systems, AAS / Office Foundations, OEC / Office Support, OEC
- Computer Systems Technology, AAS
- General Business, AAS
- General Program, AA
- Technology, AAS / Welding, UC

If What college are you reporting for? Matanuska-Susitna College Is Selected

Q14 Please select the degree program you are submitting this survey for.

- Accounting, AAS
- Computer Info & Office Systems, AAS / Office Foundations, OEC / Office Support, OEC
- Computer Systems Technology, AAS / Cisco Cert Network Associate, OEC
- General Business, AAS
- General Program, AA
- Human Services, AAS
- Paramedical Tech, AAS
- Small Business Administration, AAS
- Sustainable Energy, OEC
- Veterinary Assisting, OEC
Display This Question: If What college are you reporting for? Prince William Sound College Is Selected
Q15 Please select the degree program you are submitting this survey for.
- Direct Services Specialist, OEC
- Disability Services, AAS
- General Program, AA
- Industrial Technology, AAS
- Millwright, OEC
- Outdoor Leadership, AAS

Display This Question: If What college are you reporting for? General Education Is Selected
Q16 Please select the degree program you are submitting this survey for.
- General Education

Q17 What is the status of your program? (Note: if neither of these options fit your program, please contact OAA for assistance at 786-1054 or uaa.aac@alaska.edu.)
- Active
- Admissions Suspended

If Admissions Suspended is Selected, Survey Ends.

Q18 Have you submitted your annual academic assessment report to your college?
- Yes
- Not yet

Q19 Is the program externally accredited by any organization other than the NWCCU?
- Yes
- No

Q20 Please estimate the percentage of program faculty who actively engaged in assessment activities this past academic year.
- 0-24%
- 25-49%
- 50-74%
- 75-100%

Q21 In the past academic year, has the program made changes to its assessment plan?
- Yes
- No
Display This Question:
If In the past academic year, has the program made changes to its assessment plan... Yes Is Selected

Q22 Please explain the purpose for the changes and briefly highlight what major changes were made.

Q23 Please select what stage of this year’s annual assessment process the program is in.
 ◇ No assessment data has been collected.
 ◇ Assessment data has been collected.
 ◇ Assessment data has been compiled or aggregated.
 ◇ Program faculty have reviewed and discussed assessment data.
 ◇ Program faculty have made recommendations for improvement based on assessment data.

Display This Question:
If Please select what stage of the annual assessment process... No assessment data has been collected. Is Selected

Q24 Please explain.

Display This Question:
If Please select what stage of the annual assessment process... Assessment data has been collected. Is Selected

Q25 Please estimate when data will be compiled or aggregated.

Display This Question:
If Please select what stage of the annual assessment process... Assessment data has been compiled or aggregated. Is Selected

Q26 Please estimate when program faculty will review and discuss assessment data.

Display This Question:
If Please select what stage of the annual assessment process... Program faculty have reviewed and discussed assessment data. Is Selected

Q27 Please estimate when program faculty will consider and make recommendations for improvement.

Display This Question:
If Please select what stage of the annual assessment process... Faculty have made improvement recommendations based on assessment data. Is Selected

Q28 Please describe any program improvement recommendations that have been made.

Q29 What is the number of current Program Student Learning Outcomes (PSLOs) for the program?
Q30 While not all PSLOs need to be measured annually, PSLOs should be measured within a reasonable review cycle. Please provide information below about the PSLOs that the program measured this academic year.

______ Indicate the number of measured PSLOs for which student achievement met or exceeded program faculty expectations.

______ Indicate the number of measured PSLOs for which student achievement did not meet program faculty expectations.

Q31 The ultimate goal of academic program assessment at UAA is to serve as a resource for improving teaching and learning. Over the course of this academic year, has the program used past assessment results to make improvements? If yes, please check all that apply.

- Course curriculum changes
- Course prerequisite changes
- Changes in teaching methods
- Changes in advising
- Degree requirement changes
- Degree course sequencing
- Course enrollment changes [e.g. course capacity, grading structure (pass/fail, A-F)]
- Personnel decisions
- Changes in program policies/procedures
- Changes to Program Student Learning Outcomes (PSLOs)
- College-wide initiatives (e.g. High Impact Practices)
- Faculty, staff, student development
- Other
- None were recommended for this year

Display This Question:
If The ultimate goal of academic program assessment at UAA is to serve as a resource for improving teaching and learning... Other Is Selected

Q32 Please briefly describe.

Q33 Would you like any assistance from the Faculty Senate Academic Assessment Committee?

- Yes
- No

Display This Question:
If Would you like any assistance from the Faculty Senate Academic Assessment Committee? Yes Is Selected

Q34 Please describe the type of assistance you are requesting.

Q35 The Faculty Senate Academic Assessment Committee is dedicated to minimizing additional assessment reporting requirements. Please let us know if you have any comments, concerns, or feedback on this survey tool.
Associate of Applied Science in Diagnostic Medical Sonography

Academic Assessment Plan

Adopted by

The Diagnostic Medical Sonography faculty: 20171116

Reviewed by the Academic Assessment Committee: 12/1/17
Reviewed by the Faculty Senate as an information item: TBD
MISSION STATEMENT

The Diagnostic Medical Sonography program prepares competent entry-level general sonographers in the cognitive, psychomotor, and affective learning domains to meet Alaska’s health needs while promoting excellence in the sonography profession through advocacy, education, and community partnerships.

PROGRAM STUDENT LEARNING OUTCOMES (PSLO)

Students graduating with an Associate of Applied Science in Diagnostic Medical Sonography will be able to:

- Apply entry-level knowledge of physics, anatomy, physiology, and pathophysiology related to sonography.
- Perform general sonography procedures with continuing competency.
- Demonstrate proficiency in patient assessment and care activities related to sonography.
- Utilize effective oral and written communication with patients, physicians, and other medical personnel.
- Employ professional and ethical judgment in the performance of sonographic duties.

RELATED INSTRUCTION

Students in the Diagnostic Medical Sonography (DMS) program build knowledge and skills needed to carry out specific tasks while they develop abilities in the essential elements of communication, computation, and human relations. DMS students obtain the element of communication through the requirement to complete WRTG A111 Writing Across Contexts and WRTG A212 Writing and the Professions or WRTG A213 Writing and the Sciences, obtain the element of computation through the requirement to complete MATH A105 Intermediate Algebra or higher, and obtain the element of human relations through the requirement to complete an Oral Communication Skills course.
Measures

<table>
<thead>
<tr>
<th>PROGRAM STUDENT LEARNING OUTCOMES</th>
<th>DIRECT MEASURES</th>
<th>INDIRECT MEASURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathophysiology Case Study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Competencies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Progress Evaluations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capstone Evaluation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Certification Results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-Reflection Journals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduate Survey</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employer Survey</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employment Rate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apply entry-level knowledge of physics, anatomy, physiology, and pathophysiology related to sonography.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Perform general sonography procedures with continuing competency.</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Demonstrate proficiency in patient assessment and care activities related to sonography.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Utilize effective oral and written communication with patients, physicians, and other medical personnel.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Employ professional and ethical judgment in the performance of sonographic duties.</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

0 = Tool is not used to measure the associated objective.
1 = Tool is used to measure the associated objective.
Process

<table>
<thead>
<tr>
<th>Measure</th>
<th>Applied By</th>
<th>Collected By</th>
<th>Collection Schedule</th>
<th>Collated By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathophysiology Case Study</td>
<td>DMS A392 Faculty</td>
<td>DMS A392 Faculty</td>
<td>Course completion</td>
<td>Program Director</td>
</tr>
<tr>
<td>Clinical Competencies</td>
<td>Clinical Instructors & Preceptors</td>
<td>Clinical Practicum Faculty & Clinical Coordinator</td>
<td>Continuously during clinical practicums</td>
<td>Clinical Coordinator & Program Director</td>
</tr>
<tr>
<td>Clinical Progress Evaluations</td>
<td>Clinical Practicum Faculty & Clinical Coordinator</td>
<td>Clinical Practicum Faculty & Clinical Coordinator</td>
<td>Continuously during clinical practicums</td>
<td>Clinical Coordinator & Program Director</td>
</tr>
<tr>
<td>Capstone Evaluation</td>
<td>DMS A395 Faculty</td>
<td>DMS A395 Faculty</td>
<td>Course completion</td>
<td>Program Director</td>
</tr>
<tr>
<td>National Certification Results</td>
<td>ARDMS† and ARRT‡‡</td>
<td>Program Director</td>
<td>Within one year post-graduation</td>
<td>Program Director</td>
</tr>
<tr>
<td>Self-Reflection Journals</td>
<td>Course Faculty</td>
<td>Course Faculty</td>
<td>Continuously as assigned</td>
<td>Program Director</td>
</tr>
<tr>
<td>Graduate Survey</td>
<td>Administrative Staff</td>
<td>Administrative Staff</td>
<td>Within one month post-graduation</td>
<td>Program Director</td>
</tr>
<tr>
<td>Employer Survey</td>
<td>Administrative Staff</td>
<td>Administrative Staff</td>
<td>Within one year post-graduation</td>
<td>Program Director</td>
</tr>
<tr>
<td>Employment Rate</td>
<td>Administrative Staff</td>
<td>Administrative Staff</td>
<td>Within one year post-graduation</td>
<td>Program Director</td>
</tr>
</tbody>
</table>

†American Registry of Diagnostic Medical Sonographers
‡‡American Registry of Radiologic Technologists
Data Influences

The factors that influence the data provided by each measure are:

Pathophysiology Case Study

- The pathologic conditions of the patients the student had been involved with imaging.
- The availability of additional diagnostic information for the selected patient.
- The writing skills of the student.

Clinical Competencies

- The knowledge and experience of the clinical instructor/preceptor.
- The leniency of the clinical instructor/preceptor.
- The medical/mental condition of the patient.
- The cooperation of the patient.

Clinical Progress Evaluations

- The initiative of the student.
- The workload of the facility.
- Limited travel opportunities for faculty/clinical coordinator visits to distant training sites.

Capstone Evaluation

- The variety of examination types able to be performed during the evaluation period.

National Certification Results

- The student choosing to apply for certification.
- The student’s preparation for the examinations.

Self-Reflection Journals

- The effort put forth to complete the journal assignments.
- The self-awareness of the student.
- The writing skills of the student.

Graduate Survey

- The individual experiences of each student.
- The willingness of the student to complete the survey.

Employer Survey

- The student notifying program administration of their employment.
- The willingness of the employer to complete the survey.

Employment Rate

- The student notifying program administration of their employment.
Data Assessment

The program assessment is tied to student cohorts and data collection spans a 2–3 year period. The application of most measures takes place during the second year of the program and post-graduation. Data from the measures is routinely assessed as it’s being collected. However, the program director will meet with program faculty and the clinical coordinator to analyze the collated data for the reporting period, determine the meaning, and formulate recommendations. The program director is responsible for coordinating and/or implementing appropriate recommendations.

Recommendations may include:

- Changes in course content, scheduling, sequencing, prerequisites, delivery methods, etc.
- Changes in faculty/staff assignments.
- Changes in advising methods and program requirements.
- Addition and/or replacement of equipment.
- Changes to facilities.

Assessment Reporting

The program will complete an Academic Assessment Survey and Academic Assessment Report annually. The report will include any changes or additions to the program, expected improvements of the changes or additions, the PSLOs measured, data collection and analysis, recommendations based on the findings, and other relevant information. The designated DMS faculty member will complete the Academic Assessment Survey and submit the Academic Assessment Report.

Assessment Revision

The program director will meet with program faculty and the clinical coordinator at least once a year to review the accuracy, currency, and the effectiveness of each measure in the assessment plan. The need for new measures will be addressed during the review.

The program director is responsible for making all minor and major changes to the assessment plan and submitting the revised assessment plan for administrative review and approval.
Bachelor of Science and Bachelor of Arts in Computer Science

Academic Assessment Plan

Version 2.2

Adopted by

The Computer Science & Engineering faculty: 10/25/2013

Approved by CoEng Assessment Committee 9/10/14

Reviewed with curriculum changes by the Academic Assessment Committee as an information item 12/1/17
Reviewed by the Faculty Senate as an information item TBD

Reviewed by the Academic Assessment Committee 10/17/14
Reviewed by the Faculty Senate as an information item 11/7/14
Table of Contents

Mission Statement ... 3
Program Introduction ... 3
Assessment Process Introduction ... 3
Program Student Learning Outcomes ... 4
Table 1: Association of Assessment Measures to Student Learning Outcomes 4
Assessment Measures ... 6
Table 2: Program Outcomes Assessment Measures and Administration 6
Assessment Implementation & Analysis for Program Improvement 7
 General Implementation Strategy ... 7
 Method of Data Analysis and Formulation of Recommendations for Program Improvement .. 7
 Modification of the Assessment Plan .. 9
Appendix A: Faculty Review of Software Development Project 10
Appendix B: ETS Major Field Test in Computer Science ... 17
Appendix C: Student Exit Survey .. 19
MISSION STATEMENT

The Computer Science program at the University of Alaska Anchorage is committed to the University’s mission to discover and disseminate knowledge through teaching, research, engagement, and creative expression. First, through undergraduate and graduate programs, we strive to teach our students the fundamental principles of computer science and important issues in computing so they may pursue advanced degrees or enter the workplace as productive, competent software development or information technology professionals. Second, the program seeks to further the profession of computer science through professional activities and public service within the community, state, nation, and society at large. Finally, the program engages in and disseminates research to advance the development of computer science and provide innovative technological solutions to address the needs of modern society.

PROGRAM INTRODUCTION

The Computer Science program is housed in the Department of Computer Science & Engineering in the College of Engineering. A common core curriculum consisting of computer programming, computer organization, and networking is shared by the BA/BS in Computer Science and the Bachelor of Science in Engineering concentration in Computer Systems Engineering.

The BS program is accredited by the Computing Accreditation Commission of ABET, Inc. The BA program does not include the math and science requirements necessary for accreditation through ABET but the computer science content is identical to the BA degree.

ASSESSMENT PROCESS INTRODUCTION

In Spring of 2013 the department adopted new Program Student Learning Outcomes (PSLO’s) as part of our efforts to obtain ABET accreditation. The eleven adopted PSLO’s closely match the outcomes required by ABET for accreditation and range from communication skills to ethics to programming skills and theoretical foundations of Computer Science. Previously, the BA/BS program had only six PSLO’s with only an indirect mapping to the required ABET outcomes. Since the PSLO’s have changed significantly our data analysis is starting over effective Spring 2013. The core of the assessment plan is now based on faculty evaluation via rubrics. Student artifacts that are collected in different courses throughout the curriculum are evaluated by faculty members and the results are aggregated in the assessment report.

Currently, our assessment plan includes:

- Educational Testing Service (ETS) Major Field Test in Computer Science
- Exit survey of CS graduates.
PROGRAM STUDENT LEARNING OUTCOMES

At the completion of this program, students will be able to:

1. Apply knowledge of computing and mathematics appropriate to the discipline.
2. Analyze a problem, and identify and define the computing requirements appropriate to its solution.
3. Design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs.
4. Function effectively on teams to accomplish a common goal.
5. Demonstrate an understanding of professional, ethical, legal, security and social issues and responsibilities.
6. Communicate effectively with a range of audiences, including technical and non-technical audiences for business, end-user, client, and computing contexts.
7. Analyze the local and global impact of computing on individuals, organizations, and society.
8. Recognize the need for and an ability to engage in continuing professional development.
9. Use current techniques, skills, and tools necessary for computing practice.
10. Apply mathematical foundations, algorithmic principles, and computer science theory in the modeling and design of computer-based systems in a way that demonstrates comprehension of the tradeoffs involved in design choices.
11. Apply design and development principles in the construction of software systems of varying complexity.

The highlighted text is not an ABET PSLO. It was added to our PSLO’s after discussion from our Advisory Board.
Table 1: Association of Assessment Measures to Program Student Learning Outcomes

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>CSCE A311</th>
<th>CSCE A320</th>
<th>CSCE A365</th>
<th>CSCE A401</th>
<th>CSCE A410</th>
<th>Exit Survey</th>
<th>ETS Field Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Apply knowledge of computing and mathematics appropriate to the discipline.</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2. Analyze a problem, and identify and define the computing requirements appropriate to its solution.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3. Design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs.</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4. Function effectively on teams to accomplish a common goal.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5. Demonstrate an understanding of professional, ethical, legal, security and social issues and responsibilities.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6. Communicate effectively with a range of audiences, including technical and non-technical audiences for business, end-user, client, and computing contexts.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7. Analyze the local and global impact of computing on individuals, organizations, and society.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8. Recognize the need for and an ability to engage in continuing professional development.</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>9. Use current techniques, skills, and tools necessary for computing practice.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10. Apply mathematical foundations, algorithmic principles, and computer science theory in the modeling and design of computer-based systems in a way that demonstrates comprehension of the tradeoffs involved in design choices.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11. Apply design and development principles in the construction of software systems of varying complexity.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

0 = Measure is not used to measure the associated outcome.
1 = Measure is used to measure the associated outcome.
ASSESSMENT MEASURES

A description of the tools used in the assessment of the program outcomes and their implementation are summarized in Table 1. The tools and their relationships to the program outcomes are listed in Table 2.

TABLE 2: PROGRAM OUTCOMES ASSESSMENT MEASURES AND ADMINISTRATION

<table>
<thead>
<tr>
<th>Measure</th>
<th>Description</th>
<th>Frequency/Start Date</th>
<th>Collection Method</th>
<th>Administered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation of student coursework</td>
<td>A rubric is used to evaluate student coursework in the context of a particular outcome. Currently work is used from: CSCE A311, CSCE A320, CSCE A365, CSCE A465, CSCE A401, and CSCE A470.</td>
<td>Yearly or every semester (depending on course offering) / Spring 2013</td>
<td>Faculty collection</td>
<td>Instructor of course</td>
</tr>
<tr>
<td>Exit Survey</td>
<td>Graduating students are asked to directly provide feedback on the effectiveness of the entire program.</td>
<td>Yearly / Spring 2013</td>
<td>Administered in CSCE A470 course</td>
<td>CSCE A470 Instructor</td>
</tr>
<tr>
<td>ETS Major Field Test</td>
<td>Worldwide standardized exam for undergraduates used to measure student academic achievement and growth.</td>
<td>Yearly / Spring 2004</td>
<td>Administered in CSCE A470 course</td>
<td>CSCE A470 Instructor</td>
</tr>
</tbody>
</table>
ASSESSMENT IMPLEMENTATION & ANALYSIS FOR PROGRAM IMPROVEMENT

General Implementation Strategy

Implementation of our assessment plan revolves around faculty evaluation of student work. Faculty members in selected courses will choose student artifacts (e.g. papers, assignments, presentations) that relate to a particular outcome and will evaluate the work based on a rubric. Evaluation is independent of the grade assigned for the course. In some cases multiple faculty members may evaluate the same outcome. For example, faculty members attending a presentation may all evaluate a student’s ability to communicate effectively. The scores from all evaluators are averaged together in the final analysis.

Two courses in particular are key to our assessment efforts. CSCE A401, Software Engineering, requires students to work in groups, work with a client to elicit and state requirements, and to implement a software project. All of these activities map to PSLO’s. In addition, the capstone course, CSCE A470, also requires students to research, specify, design, and implement a project of moderate complexity. This course touches upon most PSLO’s. In the CSCE A470 class we also administer the ETS Major Field Test in Computer Science. This test is taken nationally and allows us to compare our students’ performance with other programs nationally and internationally.

Method of Data Analysis and Formulation of Recommendations for Program Improvement

At the end of the spring semester we will collect and aggregate data that was collected in the spring and the previous fall. The data is simply averaged as we move up to higher levels of analysis. However, we will retain the low-level data if we need to drill down to see specific sub-outcomes that may need to be addressed.

For example, consider the following rubric for PSLO #2:

<table>
<thead>
<tr>
<th>Evaluation Criteria</th>
<th>Poor</th>
<th>Developing</th>
<th>Satisfactory</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Identifies and appropriately formulates the problem</td>
<td>No attempt or fails to summarize accurately</td>
<td>Summarizes but key details are missing or confused</td>
<td>Most details summarized and key relationships identified</td>
<td>Clearly identifies the challenge and embedded issues</td>
</tr>
<tr>
<td>2. Formulates appropriate computing requirements</td>
<td>No attempt or fails to summarize requirements</td>
<td>Requirements ambiguous with minimal requirements engineering methodology</td>
<td>Requirements mostly complete and gathered with a requirements engineering methodology</td>
<td>Clear requirements gathered in accordance with requirements engineering methodology</td>
</tr>
</tbody>
</table>

Student #1 receives a score of “Poor” for Outcome 2.1, and a score of “Satisfactory” for Outcome 2.2. Student #2 receives a score of “Satisfactory” for Outcome 2.1 and a score of “Excellent” for Outcome 2.2.
These scores would be aggregated as percentages for each sub-outcome. The average of the percentages is then computed for the outcome overall. Our simple example with students 1 and 2 results in the following scores:

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Poor</th>
<th>Developing</th>
<th>Satisfactory</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcome 2.1</td>
<td>50% (1/2)</td>
<td>0%</td>
<td>50% (1/2)</td>
<td>0%</td>
</tr>
<tr>
<td>Outcome 2.2</td>
<td>0%</td>
<td>0%</td>
<td>50% (1/2)</td>
<td>50% (1/2)</td>
</tr>
<tr>
<td>Outcome 2</td>
<td>25%</td>
<td>0%</td>
<td>50%</td>
<td>25%</td>
</tr>
</tbody>
</table>

To improve the score we can return to the low-level data and examine the evaluation criteria. In this case we would find that a lower score was attributed to “Identifies and appropriately formulates the problem” than “Formulates appropriate computing requirements” so we may elect to focus our efforts on how to better teach students how to identify and formulate problems.

Data is collected in the fall and spring semesters, analyzed at the end of the spring semester, discussed at the beginning of the fall semester, and recommendations implemented that fall or spring if possible. The assessment cycle schedule is shown below.

A proposed programmatic change may be any action or change in policy that the faculty deems as being necessary to improve performance relative to programs objectives and outcomes. Recommended changes should also consider workload (faculty, staff, and students), budgetary, facilities, and other relevant constraints. A few examples of changes made by programs at UAA include:

- changes in course content, scheduling, sequencing, prerequisites, delivery methods, etc.
- changes in advising methods and requirements
- addition and/or replacement of equipment
- changes to facilities
Modification of the Assessment Plan

The faculty, after reviewing the collected data and the processes used to collect it, may decide to alter the assessment plan. Changes may be made to any component of the plan, including the objectives, outcomes, assessment tools, or any other aspect of the plan. The changes are to be approved by the faculty of the program. A significantly modified assessment plan is to be forwarded to the Dean’s office, the College of Engineering Curriculum Committee, the Faculty Senate Academic Assessment Committee, and the Office of Academic Affairs.

Program Educational Objectives

The CS program has also established educational objectives that are required for ABET accreditation. Educational objectives are items that students should be able to accomplish within 5 years of graduation. ABET does not require assessment of the objectives, but we have a yearly process in which they are assessed through a survey of graduates and a yearly meeting with individuals from industry and the community. Further details are not provided here since educational objectives and their assessment is not required by UAA.
APPENDIX A: FACULTY REVIEW OF STUDENT ARTIFACTS

Measure Description:

The student artifacts selected for assessment will vary depending upon the course and instructor but include assignments, exam questions, presentations, papers, design documents, requirements documents, and software.

Rubrics for each outcome are shown below.

Outcome 1: Apply knowledge of computing and mathematics appropriate to the discipline.

Artifacts selected from CSCE A365 (Networking) and CSCE A311 (Automata & Algorithms)

<table>
<thead>
<tr>
<th>Evaluation Criteria</th>
<th>Poor</th>
<th>Developing</th>
<th>Satisfactory</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Worked through a mathematical problem on computing</td>
<td>Did not attempt the problem</td>
<td>Attempted the problem with the correct starting point but the work and final answer was incorrect</td>
<td>Attempted the problem with the correct approach but the final answer was incorrect</td>
<td>Answered the problem correctly with the correct approach</td>
</tr>
<tr>
<td>2. Solves a problem using knowledge of computer systems or programming</td>
<td>Did not attempt the problem</td>
<td>Attempted the problem with the correct starting point but the work and final answer was incorrect</td>
<td>Attempted the problem with the correct approach but the final answer was incorrect</td>
<td>Answered the problem correctly with the correct approach</td>
</tr>
</tbody>
</table>

Outcome 2: Analyze a problem, and identify and define the computing requirements appropriate to its solution.

Artifacts selected from CSCE A401 (Software Engineering) and CSCE A470 (Capstone)

<table>
<thead>
<tr>
<th>Evaluation Criteria</th>
<th>Poor</th>
<th>Developing</th>
<th>Satisfactory</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Identifies and appropriately formulates requirements for the problem or experiment</td>
<td>No attempt or fails to summarize accurately</td>
<td>Summarizes but key details are missing or confused</td>
<td>Most details summarized and key relationships identified</td>
<td>Clearly identifies the challenge and embedded issues</td>
</tr>
<tr>
<td>2. Collects and analyzes data</td>
<td>Unaware of modern data collection / fabrication techniques in their area</td>
<td>Able to use available data collection / fabrication techniques to a limited extent</td>
<td>Able to use available data collection / fabrication techniques</td>
<td>Evidence of analysis of design went well beyond expectations</td>
</tr>
<tr>
<td>3. Uses sufficient information sources</td>
<td>No evidence of combining or integrating information from multiple sources</td>
<td>Combined or integrated information from multiple sources to a limited extent</td>
<td>Combined or integrated information from multiple sources</td>
<td>Exceeded expectations in the ability to combine or integrate information from multiple sources</td>
</tr>
</tbody>
</table>
Outcome 3: Design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs.

Artifacts selected from CSCE A320 (Operating Systems), CSCE A470 (Capstone) and ETS MFT

<table>
<thead>
<tr>
<th>Evaluation Criteria</th>
<th>Poor</th>
<th>Developing</th>
<th>Satisfactory</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Does not produce a design strategy,</td>
<td>Limited attempts to form a</td>
<td>Produces a reasonable design</td>
<td>Produces an exceptional design strategy which</td>
</tr>
<tr>
<td></td>
<td>including tasks and subtasks, timelines,</td>
<td>design strategy</td>
<td>design strategy appropriate to the</td>
<td>exceeds expectations</td>
</tr>
<tr>
<td></td>
<td>and evaluation of progress</td>
<td></td>
<td>project</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Does not define specifications or</td>
<td>Attempts to define</td>
<td>Defines clear specifications</td>
<td>Defines exceptionally clear specifications and</td>
</tr>
<tr>
<td></td>
<td>objectives for the problem, and</td>
<td>specifications or objectives</td>
<td>and objectives appropriate to the</td>
<td>objectives along with clear consideration for</td>
</tr>
<tr>
<td></td>
<td>constraints are not considered.</td>
<td>for the problem, but they</td>
<td>project. Constraints are</td>
<td>various constraints.</td>
</tr>
<tr>
<td>3.</td>
<td>Does not create a final product, or the</td>
<td>Makes a start on a final</td>
<td>Creates a satisfactory final</td>
<td>Creates an exceptional final product which</td>
</tr>
<tr>
<td></td>
<td>final product is especially poor</td>
<td>product but is unable to</td>
<td>product which meets defined</td>
<td>exceeds expectations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>meet final specifications</td>
<td>specifications</td>
<td></td>
</tr>
<tr>
<td>Performance on</td>
<td>Lower 25th percentile</td>
<td>25th to 50th percentile</td>
<td>50th to 75th percentile</td>
<td>75th to 100th percentile</td>
</tr>
<tr>
<td>ETS Major Field</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test in Computer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science, Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Outcome 4: Function effectively on teams to accomplish a common goal.

Artifacts selected from CSCE A401 (Software Engineering) and CSCE A470 (Capstone)

<table>
<thead>
<tr>
<th>Evaluation Criteria</th>
<th>Poor</th>
<th>Developing</th>
<th>Satisfactory</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Does not fulfill team role duties</td>
<td>Fulfills some, but not all,</td>
<td>Fulfills team role duties</td>
<td>Exceeds expectations with respect to team role</td>
</tr>
<tr>
<td></td>
<td></td>
<td>team role duties</td>
<td></td>
<td>duties</td>
</tr>
<tr>
<td>2.</td>
<td>Does not consider other team members’</td>
<td>Sometimes considers other</td>
<td>Often addresses other team</td>
<td>Is exceptionally adept at addressing other team</td>
</tr>
<tr>
<td></td>
<td>ideas or concerns</td>
<td>team members’ ideas or</td>
<td>team members’ ideas or</td>
<td>members’ ideas or concerns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>concerns</td>
<td>concerns</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Does not communicate to other members</td>
<td>Provides terse outline of</td>
<td>Provides updates on a</td>
<td>Works exceptionally well to provide</td>
</tr>
<tr>
<td></td>
<td>regarding the project progress</td>
<td>status of the project and</td>
<td>regular basis</td>
<td>documentation of progress</td>
</tr>
<tr>
<td></td>
<td></td>
<td>relevant updates</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Outcome 5: Demonstrate an understanding of professional, ethical, legal, security and social issues and responsibilities.

Artifacts selected from CSCE A470 (Capstone)

<table>
<thead>
<tr>
<th>Evaluation Criteria</th>
<th>Poor</th>
<th>Developing</th>
<th>Satisfactory</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Uses outside resources</td>
<td>Did not appear to have researched the question at all.</td>
<td>Drew on very little outside resources.</td>
<td>Mentioned a few outside resources.</td>
<td>Clear understanding of the question as drawn from outside resources.</td>
</tr>
<tr>
<td>2. Clearly distinguishes between legal and ethical issues</td>
<td>Distinguished between legal and ethical issues.</td>
<td>Briefly mentioned legal and ethical issues.</td>
<td>Discussed both the legal and ethical issues related to the question.</td>
<td>Clearly discussed and distinguished between both the legal and ethical issues with the question.</td>
</tr>
<tr>
<td>3. Demonstrates the applicability of professional, ethical, legal, security, and social issues to the computing profession</td>
<td>The ethical question did not relate to computer professionals.</td>
<td>The ethical question may relate to computer professionals.</td>
<td>The ethical question relates to computer professionals sometimes.</td>
<td>The ethical question always relates to computer professionals.</td>
</tr>
<tr>
<td>4. Demonstrates the applicability of professional, ethical, legal, security, and social issues to himself or herself</td>
<td>The ethical question does not have any impact on my life.</td>
<td>The ethical question may have an impact on my life in the future.</td>
<td>The ethical question may have an impact on my life.</td>
<td>The ethical question has or will have an impact on my life.</td>
</tr>
</tbody>
</table>

Outcome 6: Communicate effectively with a range of audiences, including technical and non-technical audiences for business, end-user, client, and computing contexts.

Artifacts selected from CSCE A401 (Software Engineering) and CSCE A470 (Capstone)

<table>
<thead>
<tr>
<th>Evaluation Criteria</th>
<th>Poor</th>
<th>Developing</th>
<th>Satisfactory</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Effectively organizes and structures a presentation or document</td>
<td>No logical structure</td>
<td>Some structure but erratic jumps in topic</td>
<td>Most information presented logically</td>
<td>All information presented logically</td>
</tr>
<tr>
<td>2. Provides appropriate content to demonstrate detailed knowledge of subject area</td>
<td>No grasp of topic, cannot answer questions or extremely limited content</td>
<td>Only rudimentary knowledge demonstrated</td>
<td>At ease with content and provides some detail</td>
<td>Full command of subject matter</td>
</tr>
<tr>
<td>3. Effectively communicates details appropriate to the audience, including questions</td>
<td>Is unable to effectively communicate</td>
<td>Only able to answer/explain in a limited manner; limited detail</td>
<td>Provides sufficient detail to describe/answer questions</td>
<td>Communicates details exceptionally well</td>
</tr>
<tr>
<td>4. Provides effective and appropriate</td>
<td>None</td>
<td>Weak support of the material, text or</td>
<td>Mostly supports the material, most text</td>
<td>Text and diagrams strongly reinforce the</td>
</tr>
</tbody>
</table>
Outcome 7: Analyze the local and global impact of computing on individuals, organizations, and society.

Artifacts selected from CSCE A470 (Capstone)

<table>
<thead>
<tr>
<th>Evaluation Criteria</th>
<th>Poor</th>
<th>Developing</th>
<th>Satisfactory</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Identifies issues of economic, environmental and societal importance</td>
<td>Is unable to identify relevant economic, environmental and societal issues</td>
<td>Has a vague understanding of economic, environmental and societal issues</td>
<td>Demonstrates satisfactory knowledge of economic, environmental and societal issues</td>
<td>Demonstrates exceptional knowledge of economic, environmental and societal issues</td>
</tr>
<tr>
<td>2. Describes issues in a factually correct manner, supported with evidence, explained in sufficient detail and properly documented</td>
<td>Does not use facts when describing an issue, or does not support assertions with evidence or documentation</td>
<td>Makes limited use of supporting evidence and documentation when describing an issue</td>
<td>Satisfactorily describes issues in a factually correct manner, supported with evidence, explained in sufficient detail and properly documented</td>
<td>Exceeds expectations describing issues in a factually correct manner, supported with evidence, explained in sufficient detail and properly documented</td>
</tr>
</tbody>
</table>

Outcome 8: Recognize the need for and an ability to engage in continuing professional development.

Artifacts selected from CSCE A320 (Operating Systems) and CSCE A470 (Capstone)

<table>
<thead>
<tr>
<th>Evaluation Criteria</th>
<th>Poor</th>
<th>Developing</th>
<th>Satisfactory</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Demonstrates the importance of staying current in fast-changing field of computing</td>
<td>Does not understand this importance</td>
<td>Has a vague understanding, and may not fully appreciate the need for continuous learning</td>
<td>Understands this importance and shows willingness to continue to learn beyond the BS program</td>
<td>Demonstrates exceptional knowledge of problems that arise with stagnation and is enthusiastic about life-long learning</td>
</tr>
<tr>
<td>2. Demonstrates independent learning and need for continuing education</td>
<td>No independent learning or interest in continuing education</td>
<td>Limited independent learning or interest in continuing education</td>
<td>Satisfactory independent learning and interest in continuing education</td>
<td>Significant independent learning and exceptionally detailed plan for continuing education</td>
</tr>
</tbody>
</table>
Outcome 9: Use current techniques, skills, and tools necessary for computing practice.

Artifacts selected from CSCE A401 (Software Engineering) and CSCE A470 (Capstone)

<table>
<thead>
<tr>
<th>Evaluation Criteria</th>
<th>Poor</th>
<th>Developing</th>
<th>Satisfactory</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Demonstrates ability to use appropriate software development or hardware tools</td>
<td>Unable to select appropriate tools, programming languages, and software/hardware components for developing the system</td>
<td>Able to select appropriate tools, programming languages, and software/hardware components to a limited extent</td>
<td>Able to select appropriate tools, programming languages, and software/hardware components</td>
<td>Exceeded expectations in seeking out and selecting appropriate tools, programming languages, and software/hardware components</td>
</tr>
<tr>
<td>2. Demonstrates the ability to use appropriate software/hardware techniques</td>
<td>Software/hardware techniques utilized incorrectly throughout, e.g. objects used incorrectly</td>
<td>Software/hardware techniques sometimes used incorrectly or inappropriately</td>
<td>Software/hardware techniques mostly used correctly and appropriately</td>
<td>Software/hardware techniques correctly and appropriately applied throughout</td>
</tr>
</tbody>
</table>

Outcome 10: Apply mathematical foundations, algorithmic principles, and computer science theory in the modeling and design of computer-based systems in a way that demonstrates comprehension of the tradeoffs involved in design choices.

Artifacts selected from CSCE A470 (Capstone) and ETS MFT

<table>
<thead>
<tr>
<th>Evaluation Criteria</th>
<th>Poor</th>
<th>Developing</th>
<th>Satisfactory</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Integrates knowledge from other disciplines or CS sub-disciplines</td>
<td>A single viewpoint with no perspective</td>
<td>Roughly integrates multiple viewpoints, development methodologies, and software tools</td>
<td>Mostly integrates multiple viewpoints, development methodologies, and software tools</td>
<td>Fully integrates multiple viewpoints, development methodologies, and software tools</td>
</tr>
<tr>
<td>2. Demonstrates expertise with algorithms, data structures or database design</td>
<td>Algorithms or data structures employed incompatible with the project</td>
<td>Inappropriate algorithms or data structures resulting in inefficiency or scalability problems</td>
<td>Mostly appropriate algorithms and data structures with some analysis for efficiency and scalability</td>
<td>Appropriate algorithms and data structures with analysis for efficiency and scalability</td>
</tr>
<tr>
<td>Performance on ETS Major Field Test in Computer Science, Theory Category</td>
<td>Lower 25th percentile</td>
<td>25th to 50th percentile</td>
<td>50th to 75th percentile</td>
<td>75th to 100th percentile</td>
</tr>
</tbody>
</table>
Outcome 11: Apply design and development principles in the construction of software systems of varying complexity.

Artifacts selected from CSCE A470 (Capstone) and ETS MFT

<table>
<thead>
<tr>
<th>Evaluation Criteria</th>
<th>Poor</th>
<th>Developing</th>
<th>Satisfactory</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Produces an appropriate software design</td>
<td>No consideration given to the design of the system and architecture</td>
<td>Limited or inconsistent design principles, or inappropriate design</td>
<td>Mostly consistent use design principles and mostly appropriate design</td>
<td>Fully appropriate design, correctly implemented and documented</td>
</tr>
<tr>
<td>2. Produces usable software</td>
<td>No consideration given to human usability factors</td>
<td>Little consideration, inconsistent</td>
<td>Some consideration, partially consistent</td>
<td>Serious consideration, fully consistent</td>
</tr>
<tr>
<td>3. Demonstrates principles of software engineering and testing</td>
<td>No software development methodology or testing utilized, “Code like Hell”</td>
<td>Limited software development methodology and testing</td>
<td>Mostly consistent in applying a software development and testing methodology</td>
<td>Fully consistent in applying a software development and testing methodology with project assessment</td>
</tr>
<tr>
<td>4. Produces readable code</td>
<td>Difficult to follow, no documentation</td>
<td>Some inline documentation, code possible to follow with effort</td>
<td>Code is understandable, major classes and algorithms documented</td>
<td>Code is very easy to follow and completely documented</td>
</tr>
<tr>
<td>5. Implements software requirements appropriate to the project scope and complexity</td>
<td>Major requirements incomplete</td>
<td>Some requirements complete for high complexity, some requirements incomplete for low complexity</td>
<td>Major requirements complete for high complexity, all requirements complete for low complexity</td>
<td>All requirements complete, moderate or high complexity, usable system</td>
</tr>
<tr>
<td>Performance on ETS Major Field Test in Computer Science, Programming Category</td>
<td>Lower 25th percentile</td>
<td>25th to 50th percentile</td>
<td>50th to 75th percentile</td>
<td>75th to 100th percentile</td>
</tr>
</tbody>
</table>
Factors that affect the collected data:

- Time and energy requirements. Significant work is required to collect and analyze the data.
- Bias associated with the grading philosophy of a single faculty. This is somewhat mitigated by use of the rubrics and by aggregation across several courses, student artifacts, and instructors.

Tabulating, Interpretation, and Reporting Results

A score of 1-4 is assigned to evaluations corresponding to Poor, Developing, Satisfactory, or Excellent. We will average data across each outcome and will drill down to averages and/or histograms of sub-outcomes as needed. An average score of “Poor” or “Developing” warrants remedial action while continuous improvement is possible for higher scores. The results will be discussed with the program faculty during the assessment meeting.
APPENDIX B: ETS MAJOR FIELD TEST IN COMPUTER SCIENCE

Measure Description:

The content of the ETS Major Field Test in Computer Science reflects the basic knowledge and understanding gained in the core undergraduate curriculum. The tests are conducted worldwide and are two-hour, multiple-choice examinations designed to assess mastery of concepts and principles as well as knowledge expected of students at the conclusion of a major in CS. They go beyond measurement of factual knowledge, however, because they also evaluate students' ability to analyze and solve problems, understand relationships, and interpret material.

Each test delivers an individual student score report, plus the mean scale score and standard deviation for the group of students tested. The CS test also delivers subscores that can be used to highlight students' strengths or weaknesses in these areas. Additionally, the CS test also delivers assessment indicators relating to the performance of the group of students within subareas of computer science. The Major Field Tests only score correct answers, thereby not penalizing students for any omissions or guesses.

The test is administered during the CSCE A470 course. The test results feed into Outcomes 10 and 11 and also can be analyzed for trends on their own.

Factors that affect the collected data:

- Student motivation. We do not tie the test scores with course grades, thereby raising the possibility that unmotivated students will not try their best on the exam. Students do have some motivation in seeing where they stand in relation to other CS students nationwide and learning of any potential deficiencies in their studies.
- Cost. Each exam costs $30. If funding is unavailable we will be unable to collect data.
- Number of graduating students. A small number of graduating students taking the exam undermines the statistical validity of the results.
- While the data provides a useful snapshot as to our student performance compared to other institutions, the granularity of the results makes it difficult to effect change. For example, if our score is low in the area of Systems, then it is difficult to determine if the deficiency lies in Operating Systems, Architecture, Networking, etc.

How to interpret the data:

The ETS reports scores on a scale of 120-200. Scores are provided for each individual student together with subscores ranging from 0-100 in the specific areas of Programming Fundamentals, Computer Organization/Architecture/Operating Systems, and Algorithms/Theory/Computation/Math. Averages and percentiles are provided for all universities nationwide. The percentile is translated into a score using the rubrics described in Appendix A.

Tabulating and Reporting Results:

The test results will be received once a year. Based on the percentile for each student we will make a tabulation on the rubrics for outcomes 10 and 11.
We will also chart the department’s performance yearly and compare the performance to that of other departments nationwide.
APPENDIX C: STUDENT EXIT SURVEY

Measure Description:

The exit survey asks graduates of the program to rate their performance relative to the program’s outcomes. Additionally, graduates are asked to rate the program’s delivery of the material related to the objectives from their viewpoint.

Surveys are distributed to students in the CSCE A470 course. The students complete and return the surveys in class. The results are not examined until after grades have been submitted.

A sample of the survey instrument is in the following pages.

Factors that affect the collected data:

A number of factors need to be taken into consideration when analyzing the data. The following factors are those that we have identified.

- Student knowledge. Students that enroll in CSCE A470 may not actually graduate until the following year and may not have the knowledge to answer the survey accurately.
- Student effort. The amount of effort students take to accurately complete the survey is variable.

How to interpret the data:

We must consider sample size and the indirect nature of the survey. Student feedback should be considered by the program faculty.

Tabulating and Reporting Results:

The survey is administered by the instructor of CSCE A470. The assessment coordinator receives the results and tabulates them for use in outcomes review. The results are charted and tracked separately from the rubric evaluation of student artifacts.
All programs at UAA are required to implement an outcomes-based assessment program. As a part of the program, we are surveying graduating students to find ways of improving our program. Your feedback will go a long way in helping us determine how well we are doing and what we can do to better serve our students, alumni, and the community. These surveys will not be examined until after final grades have been submitted for the semester.

Have you accepted a permanent computer science position? □ Yes □ No

The primary areas of computer science in which you hope to work are:

□ Software Development □ Networking or System Administration □ Research
□ Management □ Technical Support □ Database Systems
□ Software Testing □ Systems Analyst □ Not working in Computer Science
□ Other: ___________________________

The UAA Computer Science program has adopted 11 outcomes that students should be able to do upon completion of the program. Please rate the program’s effectiveness in teaching you knowledge/skills relative to each outcome by marking a single box for each row in the table.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>How well did we teach this?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Apply knowledge of computing and mathematics appropriate to the discipline.</td>
<td>Poor</td>
</tr>
<tr>
<td>2. Analyze a problem, and identify and define the computing requirements appropriate to its solution.</td>
<td></td>
</tr>
<tr>
<td>3. Design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs.</td>
<td></td>
</tr>
<tr>
<td>4. Function effectively on teams to accomplish a common goal.</td>
<td></td>
</tr>
<tr>
<td>5. Demonstrate an understanding of professional, ethical, legal, security and social issues and responsibilities.</td>
<td></td>
</tr>
<tr>
<td>6. Communicate effectively with a range of audiences, including technical and non-technical audiences for business, end-user, client, and computing contexts.</td>
<td></td>
</tr>
<tr>
<td>7. Analyze the local and global impact of computing on individuals, organizations, and society.</td>
<td></td>
</tr>
<tr>
<td>8. Recognize the need for and an ability to engage in continuing professional development.</td>
<td></td>
</tr>
<tr>
<td>9. Use current techniques, skills, and tools necessary for computing practice.</td>
<td></td>
</tr>
<tr>
<td>10. Apply mathematical foundations, algorithmic principles, and computer science theory in the modeling and design of computer-based systems in a way that demonstrates comprehension of the tradeoffs involved in design choices.</td>
<td></td>
</tr>
<tr>
<td>11. Apply design and development principles in the construction of software systems of varying complexity.</td>
<td></td>
</tr>
</tbody>
</table>
Please rate your proficiency relative to each outcome by marking a single box for each row in the table.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Poor</th>
<th>Fair</th>
<th>Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Apply knowledge of computing and mathematics appropriate to the discipline.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Analyze a problem, and identify and define the computing requirements appropriate to its solution.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Function effectively on teams to accomplish a common goal.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Demonstrate an understanding of professional, ethical, legal, security and social issues and responsibilities.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Communicate effectively with a range of audiences, including technical and non-technical audiences for business, end-user, client, and computing contexts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Analyze the local and global impact of computing on individuals, organizations, and society.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Recognize the need for and an ability to engage in continuing professional development.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Use current techniques, skills, and tools necessary for computing practice.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Apply mathematical foundations, algorithmic principles, and computer science theory in the modeling and design of computer-based systems in a way that demonstrates comprehension of the tradeoffs involved in design choices.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Apply design and development principles in the construction of software systems of varying complexity.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please indicate your satisfaction with each of the following aspects of your experience at UAA. Please feel free to use the space after the list to briefly explain any of your responses, especially if you feel less than satisfied.

Quality of the Advising: □ Poor, □ Fair, □ Good, □ Excellent

Quality of Instruction: □ Poor, □ Fair, □ Good, □ Excellent

Quality of Physical Facilities: □ Poor, □ Fair, □ Good, □ Excellent

Quality of Computer Laboratories: □ Poor, □ Fair, □ Good, □ Excellent

Optional Explanations:
Please list up to three major strengths of your undergraduate computer science education or other UAA experiences.

Please list up to three areas for improvement in our undergraduate computer science program or other aspects of UAA.

With respect to the previous question, do you have any suggestions on how UAA could address these improvements?

Would you recommend a UAA computer science education to a friend or relative?

□ Yes □ No □ Maybe
A map does not just chart, it unlocks and formulates meaning; it forms bridges between here and there, between disparate ideas that we did not know were previously connected. -Reif Larsen

Building on September’s Academic Assessment Seminar, Dan Kline (Director of General Education) will lead a series of workshops for faculty from across UAA (1) to develop a curriculum map of their majors and programs, (2) to align programs and majors to UAA GER outcomes, (3) to create assignments and rubrics to evaluate the GER Student Learning Outcomes, and (4) to map out an approach to assessment that fosters student success in the programs and majors as well as the GER assessment required by the Northwest Commission on Colleges and Universities’ reaffirmation of UAA’s accreditation.

In AY16, the GER Curriculum Mapping Workshops led to the development of a shared rubric which can be used in both GER courses and by programs to assess outcomes in Written Communication, Oral Communication, and Information Literacy; in AY17, the faculty workshops developed indicators in the Social Sciences, Humanities, and Fine Arts. This year’s workshops will focus upon the development of shared rubrics in Quantitative Skills, Natural Sciences, and Knowledge Integration.

Throughout the process, we will develop practical tools for curriculum mapping and assessment, and at the end of the CAFE series, we hope to have a group of programs and majors that are willing to pilot this assessment process on May 7-8, 2018, along with members of the AA assessment team.

You do not need to attend all three CAFE sessions to benefit from the discussion. All faculty, programs, and majors are invited – from certificates and associate degrees to baccalaureate, masters, and doctoral degrees.

This year there will also be discussions about Alaska Native-themed general education, general education and High Impact Practices, and looking ahead in general education and student success.

The workshop and forum series will repeat in the spring semester.

<table>
<thead>
<tr>
<th>Date</th>
<th>Room</th>
<th>Forum/Workshop</th>
<th>Register</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fri 1/26</td>
<td>LIB 307</td>
<td>GER Assessment Workshop 1: Curriculum Mapping & Shared Assessment</td>
<td>Register</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GER Forum: Alaska Native-Themed General Education Discussion</td>
<td></td>
</tr>
<tr>
<td>Fri 2/23</td>
<td>LIB 302A</td>
<td>GER Assessment Workshop 2: Student Learning Outcomes & Rubric Development</td>
<td>Register</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GER Forum: General Education High Impact Practices (HIPs) & Student Success</td>
<td></td>
</tr>
<tr>
<td>Fri 3/23</td>
<td>LIB 302A</td>
<td>GER Assessment Workshop 3: Rubric Development & Student Work</td>
<td>Register</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GER Forum: Looking Ahead in General Education</td>
<td></td>
</tr>
<tr>
<td>Mon 5/7–</td>
<td>LIB 307</td>
<td>GER/AA Assessment Soiree — 9:00 am to 1:00 pm</td>
<td>Register</td>
</tr>
<tr>
<td>Tues 5/8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Questions? Contact Dr. Dan Kline, General Education Director, at 786-4364 or dtkline@alaska.edu. Questions about connecting by distance? Email uaa.oaa@alaska.edu.