I. Call to Order

Roll
() Vacant UAB/COH Social Sciences
() Utpal Dutta UAB/SoE
() Kevin Keating UAB/Library
() Kathryn Hollis-Buchanan UAB
() Vacant UAB
() Suzanne Forster CAS Humanities
() Len Smiley CAS Quantitative Skills
() Marcia Stratton CAS Oral Communication
() Walter Olivares CAS Fine Arts
() Robert Capuozzo COE
() Sandra Pence CTC/COH/Chair
() Kyle Hampton CBPP Social Sciences
() Deborah Fox Mat-Su Written Communication
() Hilary Davies UAB Ex officio/UAB Chair
() Bart Quimby UAB Ex officio/OAA
() Vacant Student

II. Approval of Agenda (pg. 1)

III. Approval of Summary (pg. 2-3)

IV. Report from Interim Vice Provost for Curriculum and Assessment Bart Quimby

V. Chair’s Report – Sandra Pence

VI. Course Action Requests
Chg CHEM A103 Survey of Chemistry (3 cr)(3+0)(pg. 4-12)
Chg CHEM A103L Survey of Chemistry Laboratory (1 cr)(1+0)(pg. 13-21)
Chg CHEM A104 Introduction to Organic Chemistry and Biochemistry (3 cr)(3+0)(pg. 22-29)
Chg CHEM A104L Introduction to Organic Chemistry and Biochemistry Laboratory (1 cr)(0+3)(pg. 30-37)
Chg CHEM A105 General Chemistry I (3 cr)(3+0)(pg. 38-48)
Chg CHEM A105L General Chemistry I Laboratory (1 cr)(0+3)(pg. 49-58)
Chg CHEM A106 General Chemistry II (3 cr)(3+0)(pg. 59-67)
Chg CHEM A106L General Chemistry II Laboratory (1 cr)(0+3)(pg. 68-76)
Chg LEGL A101 Introduction to Law (3 cr)(3+0)(pg. 77-84)

VII. Old Business
A. General Education Assessment (pg. 85-86)

VIII. New Business

IX. Informational Items and Adjournment
I. Call to Order

Roll
() Vacant UAB/COH Social Sciences
(x) Utpal Dutta UAB/COE
(e) Kevin Keating UAB/Library
(x) Kathryn Hollis-Buchanan UAB
() Vacant UAB
(x) Suzanne Forster CAS Humanities
(x) Len Smiley CAS Quantitative Skills
(x) Marcia Stratton CAS Oral Communication
(e) Walter Olivares CAS Fine Arts
(x) Robert Capuozzo COE
(x) Sandra Pence CTC/COH/Chair
(x) Kyle Hampton CBPP Social Sciences
() Deborah Fox Mat-Su Written Communication
(x) Hilary Davies UAB Ex officio/UAB Chair
(x) Bart Quimby UAB Ex officio/OAA
() Vacant Student

II. Approval of Agenda (pg. 1)
Approved

III. Approval of Summary (pg. 2-3)
Approved

IV. Report from Interim Vice Provost for Curriculum and Assessment Bart Quimby
The more organization we have the more effective your general education process is
Bart had a meeting with Utah Valley – is ahead of UAA on the GER process, but not that far ahead, they have an administrator and staff members who work on the GER process; their GER committee works under the Provost and not under a Faculty Senate; they focus on the essential learning outcomes (ELOs); Made all of their 250+ courses recertify; their GER committee consists of faculty and deans

V. Chair’s Report – Sandra Pence
Requested that the board make a recommendation to OAA on the GER assessment process
 Hanover research will conduct research on the assessment process

VI. Course Action Requests
Add AKNS A101E Elementary Alutiiq Language I (4 cr)(4+0)(pg. 4-7)
Add AKNS A102E Elementary Alutiiq Language II (4 cr)(4+0)(pg. 8-12)
Unanimously Approved

VII. Old Business
A. Develop recommendation for OAA regarding GER assessment process (pg. 13)
Include information that allows the Director to work on the assessment plan over time
Task Force information is still needed
AA Assessment chair or a member from the committee should be on this task force
A member from the Academic Assessment committee should also be on the task force
Timeline should be 1 year
B. Review Faculty Senate Bylaws governing GERC (pg. 14)
Discussion and changes were made to the membership of community campus
Approved as amended
VIII. New Business

IX. Informational Items and Adjournment
Course Action Request
University of Alaska Anchorage
Proposal to Initiate, Add, Change, or Delete a Course

<table>
<thead>
<tr>
<th>1a. School or College</th>
<th>1b. Division</th>
<th>1c. Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS CAS</td>
<td>AMSC</td>
<td>CHEMISTRY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Course Prefix</th>
<th>3. Course Number</th>
<th>4. Previous Course Prefix & Number</th>
<th>5a. Credits/CEUs</th>
<th>5b. Contact Hours (Lecture + Lab)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM</td>
<td>A103</td>
<td>N/A</td>
<td>3</td>
<td>(3+0)</td>
</tr>
</tbody>
</table>

6. Complete Course Title
Survey of Chemistry

Abbreviated Title for Transcript (30 character)

7. Type of Course
☑ Academic ☐ Preparatory/Development ☐ Non-credit ☐ CEU ☐ Professional Development

8. Type of Action:
☐ Add or ☑ Change or ☐ Delete

If a change, mark appropriate boxes:

- Prefix
- Credits
- Title
- Grading Basis
- Course Description
- Test Score Prerequisites
- Other Restrictions
- Other CCG (please specify)

9. Repeat Status No
of Repeats Max Credits

10. Grading Basis
☑ A-F ☐ P/NP ☐ NG

11. Implementation Date
From: Fall/2012 To: /9999

12. Cross Listed with

- ☐ Stacked with
- Cross-Listed Coordination Signature

13a. Impacted Courses or Programs:
List any programs or college requirements that require this course. Please type into fields provided in table. If more than three entries, submit a separate table. A template is available at www.uaa.alaska.edu/governance.

<table>
<thead>
<tr>
<th>Impacted Program/Course</th>
<th>Catalog Page(s) Impacted</th>
<th>Date of Coordination</th>
<th>Chair/Coordinator Contacted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. See attached table
2.
3.

Initiator Name (typed): Colin McGill
Initiator Signed Initials: _________ Date:________________

13b. Coordination Email
Date: 03/05/2012
submitted to Faculty Listserv: (uaa-faculty@lists.uaa.alaska.edu)

13c. Coordination with Library Liaison
Date: 03/05/2012

14. General Education Requirement
Mark appropriate box:

- Oral Communication
- Written Communication
- Social Sciences
- Quantitative Skills
- Natural Sciences
- Integrative Capstone

15. **Course Description (suggested length 20 to 50 words)**

Survey of topics including: matter, energy, units of measurement, the periodic table, atomic and molecular structure, chemical bonding, radioactivity, oxidation-reduction reactions, solutions involving acids, bases and buffers; and an introduction to organic chemistry with units on functional groups and the chemistry of alkanes, alkenes and alkynes. Special Note: This is an introductory course designed for health science majors and assumes prior knowledge of college preparatory high school chemistry and algebra. CHEM A103L is the laboratory component of this course and requires a separate registration.

16a. **Course Prerequisite(s) (list prefix and number)**
(MATH A105, or MATH A107, or MATH A108, or MATH A109, or MATH A200) with minimum grade of C.

16b. **Test Score(s)**
16c. **Co-requisite(s) (concurrent enrollment required)**

16d. **Other Restriction(s)**

<table>
<thead>
<tr>
<th>☐ College</th>
<th>☐ Major</th>
<th>☐ Class</th>
<th>☐ Level</th>
<th>☐ Other Restriction(s)</th>
<th>☐ Other CCG (please specify)</th>
</tr>
</thead>
</table>

16e. **Registration Restriction(s) (non-codable)**

CHEM A055 with a minimum grade of C or college preparatory high school chemistry with a minimum grade of C. If the MATH A105 prerequisite is not satisfied, appropriate scores on the SAT or ACT tests or appropriate scores on a UAA-approved placement test such as the Accuplacer Placement test.

17. ☐ Mark if course has fees
18. ☐ Mark if course is a selected topic course

19. **Justification for Action**
Course content guide update. Prerequisite clarification.
<table>
<thead>
<tr>
<th>Initiator (faculty only)</th>
<th>Date</th>
<th>Approved</th>
<th>Disapproved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiator (TYPE NAME)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disapproved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disapproved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disapproved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department Chairperson</td>
<td>Date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disapproved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disapproved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curriculum Committee Chairperson</td>
<td>Date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disapproved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disapproved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undergraduate/Graduate Academic Board Chairperson</td>
<td>Date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disapproved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disapproved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provost or Designee</td>
<td>Date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disapproved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disapproved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impacted Program/Course</td>
<td>Catalog Page(s) Impacted</td>
<td>Date of Coordination</td>
<td>Chair/Coordinator Contacted</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------</td>
<td>----------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>GER, natural sciences, p. 84</td>
<td></td>
<td>3/05/2012</td>
<td></td>
</tr>
<tr>
<td>CAS requirement, B.S. degree, natural sciences, p. 87</td>
<td></td>
<td>3/05/2012</td>
<td></td>
</tr>
<tr>
<td>Health Sciences (DPL 404, 786-6565)</td>
<td></td>
<td>3/26/2012</td>
<td></td>
</tr>
<tr>
<td>B.S. Health Sciences, BSHS Physician Assistant Track, admission requirement, p. 154</td>
<td>3/26/2012</td>
<td>Dr. John Riley</td>
<td></td>
</tr>
<tr>
<td>School of Nursing (PSB 103, 786-4550)</td>
<td></td>
<td>3/26/2012</td>
<td>Dr. Barbara Berner</td>
</tr>
<tr>
<td>B.S. Nursing Science, admission requirement, p. 162</td>
<td></td>
<td>3/26/2012</td>
<td></td>
</tr>
<tr>
<td>B.S. Nursing Science, major requirement, p. 162</td>
<td></td>
<td>3/26/2012</td>
<td></td>
</tr>
<tr>
<td>Registered Nurse Option, admission requirement, p. 163</td>
<td></td>
<td>3/26/2012</td>
<td></td>
</tr>
<tr>
<td>Registered Nurse Option, major requirement, p. 163</td>
<td></td>
<td>3/26/2012</td>
<td></td>
</tr>
<tr>
<td>Computer Electronics (Kenai Peninsula College, 907-262-0330)</td>
<td></td>
<td>3/26/2012</td>
<td>Rich Kochis</td>
</tr>
<tr>
<td>A.A.S. Computer Electronics, general requirement, p. 187</td>
<td></td>
<td>3/26/2012</td>
<td></td>
</tr>
<tr>
<td>Dental Hygiene (AHS 160, 786-6929)</td>
<td></td>
<td>3/26/2012</td>
<td>Robin Wahto</td>
</tr>
<tr>
<td>A.A.S. Dental Hygiene, admission requirement, p. 200</td>
<td></td>
<td>3/26/2012</td>
<td></td>
</tr>
</tbody>
</table>
B.S. Dental Hygiene, admission requirement, p. 200

Dietetics and Nutrition (CUDY 126, 786-4728) 3/26/2012 Tim Doebler

B.S. Nutrition, Community Nutrition Emphasis, support course, p. 203

Industrial Process Instrumentation, (Kenai Peninsula College, 907-262-0330) 3/26/2012 Henry Haney

A.A.S. Industrial Process Instrumentation, general requirement, p. 210

Medical Laboratory Technology (AHS 169, 786-4930) 3/26/2012 Heidi Mannion

A.A.S. Medical Laboratory Technology, support course, p. 215

B.S. Medical Technology, support course, p. 216

Occupational Safety and Health (KPC, University Center 118, 786-6421) 3/26/2012 Don Webber

A.A.S. Occupational Safety and Health, graduation requirement, p. 217

Process Technology (KPC, Kenai River Campus, 907-262-0300)

A.A.S. Process Technology, general requirement, p. 220 (twice)

Renewable Energy (Kodiak College, 907-486-1209) 3/26/2012 Lorraine Stewart

A.A.S. Technology, major requirement, p. 225
Chemistry Department (CPSB 101Q, 786-1238) 3/26/2012 Eric Holmberg

CHEM A103, course listing, p. 355
CHEM A103L, prerequisite, p. 356
CHEM A104, prerequisite, p. 356
CHEM A104L, prerequisite, p. 356

Medical Laboratory Technology (CTC, AHS 169, 786-4930) 3/26/2012 Heidi Mannion

MEDT A132, prerequisite, p. 436
MEDT A133, prerequisite, p. 436
MEDT A202, prerequisite, p. 436
MEDT A203, prerequisite, p. 436
MEDT A204, prerequisite, p. 437
MEDT A206, prerequisite, p. 437
MEDT A208, prerequisite, p. 437
Course Content Guide for CHEM A103

University of Alaska Anchorage

College of Arts & Sciences

I. Date of Initiation: January 30, 2012

II. Course Information:

A. College: College of Arts & Sciences

B. Course Subject: CHEM

C. Course Number: A103

D. Number of Credits: 3

E. Contact Hours: 3 + 0

F. Course Title: Survey of Chemistry

G. Grading Basis: A – F

H. Implementation Date: Fall 2012

I. Course Description: Survey of topics including: matter, energy, units of measurement, the periodic table, atomic and molecular structure, chemical bonding, radioactivity, oxidation-reduction reactions, solutions involving acids, bases and buffers; and an introduction to organic chemistry with units on functional groups and the chemistry of alkanes, alkenes and alkynes. Special Note: This is an introductory course designed for health science majors and assumes prior knowledge of college preparatory high school chemistry and algebra. CHEM A103L is the laboratory component of this course and requires a separate registration.

J. Course Attributes: UAA GER Natural Sciences Requirement

K. Prerequisites: (MATH A105, or MATH A107, or MATH A108, or MATH A109, or MATH A200) with minimum grade of C

L. Test Scores: N/A
M. **Co-requisites:** N/A

N. **Registration Restrictions:** CHEM A055 with a minimum grade of C or college preparatory high school chemistry with a minimum grade of C. If the MATH A105 prerequisite is not satisfied, appropriate scores on the SAT or ACT tests or appropriate scores on a UAA-approved placement test such as the Accuplacer Placement test.

O. **Course Fee:** No

III. **Instructional Goals and Student Learning Outcomes:**

A. **Course Activities:**

Students will explore concepts and solve problems relevant to current topics in chemistry. The instructor will assist in the learning process through a variety of methods that may include lectures, facilitation of class discussions, and demonstrations.

B. **Instructional Goals:**

This course is designed to fulfill the needs of general education requirements and to provide a foundation in general chemistry specifically for health science majors. It is intended to be a survey of general and organic chemistry with significant emphasis on health-related material. The periodic table, atomic and molecular structure, bonding, and chemical reactions, skills in measurements, balancing chemical equations and problem solving are emphasized.

The instructor will:
1. Present models of the periodic table, atomic and molecular structure, chemical bonding and reactions for development of observational skills and conceptual foundations in chemistry.
2. Present questions to initiate discussion, help students differentiate, link and integrate ideas and develop their own concepts, to articulate their thinking and explain models and solutions.
3. Provide multiple human health-related contexts for applying concepts and invite students to defend and verify their models and their solutions to problems.

C. **Student Learning Outcomes:**

The student will:
1. Analyze chemical and physical events in terms of appropriate chemical vocabulary and concepts.
2. Recognize and interpret chemical models of the periodic table, atomic and molecular structure, bonding and chemical reactions.
3. Apply science methodology with emphasis on exploring and verifying measurements and chemical equations in health-related problems.

D. Assessment Measures:

Various assessment tools can be used at the instructor’s discretion, including but not limited to quizzes, weekly homework and exams.

IV. Course Level Justification:

This course introduces students to chemistry concepts in atomic and molecular structure and in atomic and molecular interactions. Students learn basic skills in model exploration and verification for comprehension and retention of concepts and become acquainted with chemistry as a science discipline and how it pertains to the health sciences. This course serves as a preparatory course for CHEM A104.

V. Topical Course Outline:

1. Matter, Energy, and Measurement
2. Atoms
3. Chemical Bonds
4. Chemical Reactions
5. Gases, Liquids, and Solids
6. Solutions and Colloids
7. Reaction Rates and Chemical Equilibrium
8. Acids and Bases
9. Nuclear Chemistry
10. Organic Chemistry
11. Alkanes
12. Alkenes and Alkynes

VI. Suggested Texts:

VII. Bibliography:

Course Action Request

University of Alaska Anchorage
Proposal to Initiate, Add, Change, or Delete a Course

<table>
<thead>
<tr>
<th>1a. School or College</th>
<th>1b. Division</th>
<th>1c. Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS CAS</td>
<td>AMSC Division of Math Science</td>
<td>CHEMISTRY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Course Prefix</th>
<th>3. Course Number</th>
<th>4. Previous Course Prefix & Number</th>
<th>5a. Credits/CEUs</th>
<th>5b. Contact Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM</td>
<td>A103L</td>
<td>N/A</td>
<td>1</td>
<td>(Lecture + Lab)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. Complete Course Title</th>
<th>Abbreviated Title for Transcript (30 character)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survey of Chemistry Laboratory</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. Type of Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Academic</td>
</tr>
</tbody>
</table>

| 8. Type of Action: |
| Add or ☑ Change or ☐>Delete |

<table>
<thead>
<tr>
<th>9. Repeat Status No # of Repeats Max Credits</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>10. Grading Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ A-F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Implementation Date semester/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>From: Fall/2012 To: /9999</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. ☐ Cross Listed with</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>13a. Impacted Courses or Programs:</th>
</tr>
</thead>
</table>

Impacted Program/Course
Catalog Page(s) Impacted
Date of Coordination
Chair/Coordinator Contacted

| 1. See attached table |

| 2. |

| 3. |

Initiator Name (typed): Colin McGill
Initiator Signed Initials: ☑
Date: __________________

<table>
<thead>
<tr>
<th>13b. Coordination Email Date: 03/05/2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submitted to Faculty Listserv:</td>
</tr>
<tr>
<td>(uaa-faculty@lists.uaa.alaska.edu)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13c. Coordination with Library Liaison Date: 03/05/2012</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>14. General Education Requirement Mark appropriate box:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Oral Communication</td>
</tr>
<tr>
<td>☐ Written Communication</td>
</tr>
<tr>
<td>☐ Social Sciences</td>
</tr>
<tr>
<td>☑ Quantitative Skills</td>
</tr>
<tr>
<td>☐ Natural Sciences</td>
</tr>
<tr>
<td>☐ Integrative Capstone</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. Course Description (suggested length 20 to 50 words)</th>
</tr>
</thead>
</table>

Introductory chemistry laboratory course with experiments designed to introduce students to the basics of laboratory equipment, data collection, data analysis, and reporting; and to illustrate, augment and apply concepts covered in CHEM A103. Special Note: Students who do not meet the prerequisites for this course may be administratively dropped at the discretion of the faculty. Attendance is mandatory for all chemistry laboratory courses the first week of class. Unless prior arrangements are made with the instructor, any student who does not attend the first scheduled meeting for this lab may be administratively dropped and a student on a waiting list will be added in their place. Any fees resulting from either of these drop procedures or any late registration procedure will be the responsibility of the student.

<table>
<thead>
<tr>
<th>16a. Course Prerequisite(s) (list prefix and number) CHEM A103 with minimum grade of C or concurrent enrollment</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>16b. Test Score(s)</th>
</tr>
</thead>
</table>

| 16c. Co-requisite(s) (concurrent enrollment required) |

<table>
<thead>
<tr>
<th>16d. Other Restriction(s)</th>
</tr>
</thead>
</table>

| 16e. Registration Restriction(s) (non-codable) |

| 17. ☑ Mark if course has fees |

| 18. ☐ Mark if course is a selected topic course |

<table>
<thead>
<tr>
<th>19. Justification for Action</th>
</tr>
</thead>
</table>

Course content guide update. Prerequisite clarification.
<table>
<thead>
<tr>
<th>Initiator (faculty only)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiator (TYPE NAME)</td>
<td></td>
</tr>
<tr>
<td>□ Approved</td>
<td></td>
</tr>
<tr>
<td>□ Disapproved</td>
<td></td>
</tr>
<tr>
<td>Department Chairperson</td>
<td>Date</td>
</tr>
<tr>
<td>□ Approved</td>
<td></td>
</tr>
<tr>
<td>□ Disapproved</td>
<td></td>
</tr>
<tr>
<td>Curriculum Committee Chairperson</td>
<td>Date</td>
</tr>
<tr>
<td>□ Approved</td>
<td></td>
</tr>
<tr>
<td>□ Disapproved</td>
<td></td>
</tr>
<tr>
<td>□ Approved</td>
<td></td>
</tr>
<tr>
<td>□ Disapproved</td>
<td></td>
</tr>
<tr>
<td>Dean/Director of School/College</td>
<td>Date</td>
</tr>
<tr>
<td>□ Approved</td>
<td></td>
</tr>
<tr>
<td>□ Disapproved</td>
<td></td>
</tr>
<tr>
<td>Undergraduate/Graduate Academic Board Chairperson</td>
<td>Date</td>
</tr>
<tr>
<td>□ Approved</td>
<td></td>
</tr>
<tr>
<td>□ Disapproved</td>
<td></td>
</tr>
<tr>
<td>Provost or Designee</td>
<td>Date</td>
</tr>
<tr>
<td>□ Approved</td>
<td></td>
</tr>
<tr>
<td>□ Disapproved</td>
<td></td>
</tr>
<tr>
<td>Impacted Program/Course</td>
<td>Catalog Page(s) Impacted</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------</td>
</tr>
<tr>
<td>GER, natural sciences, p. 84</td>
<td></td>
</tr>
<tr>
<td>CAS requirement, B.S. degree, natural sciences, p. 87</td>
<td></td>
</tr>
<tr>
<td>Health Sciences (DPL 404, 786-6565)</td>
<td></td>
</tr>
<tr>
<td>B.S. Health Sciences, BSHS Physician Assistant Track, admission requirement, p. 154</td>
<td></td>
</tr>
<tr>
<td>School of Nursing (PSB 103, 786-4550)</td>
<td></td>
</tr>
<tr>
<td>B.S. Nursing Science, admission requirement, p. 162</td>
<td></td>
</tr>
<tr>
<td>B.S. Nursing Science, major requirement, p. 162</td>
<td></td>
</tr>
<tr>
<td>Registered Nurse Option, admission requirement, p. 163</td>
<td></td>
</tr>
<tr>
<td>Registered Nurse Option, major requirement, p. 163</td>
<td></td>
</tr>
<tr>
<td>Computer Electronics (Kenai Peninsula College, 907-262-0330)</td>
<td></td>
</tr>
<tr>
<td>A.A.S. Computer Electronics, general requirement, p. 187</td>
<td></td>
</tr>
<tr>
<td>Dental Hygiene (AHS 160, 786-6929)</td>
<td></td>
</tr>
<tr>
<td>B.S. Dental Hygiene, admission requirement, p. 200, 201</td>
<td></td>
</tr>
</tbody>
</table>
B.S. Dental Hygiene, support course, p. 201

Dietetics and Nutrition (CUDY 126, 786-4728)
3/26/2012
Tim Doebler

B.S. Nutrition, Community Nutrition Emphasis, support course, p. 203

Industrial Process Instrumentation, (Kenai Peninsula College, 907-262-0330)
3/26/2012
Henry Haney

A.A.S. Industrial Process Instrumentation, general requirement, p. 210

Medical Laboratory Technology (AHS 169, 786-4930)
A.A.S. Medical Laboratory Technology, support course, p. 215

B.S. Medical Technology, support course, p. 216

Occupational Safety and Health (KPC, University Center 118, 786-6421)
3/26/2012
Don Webber

A.A.S. Occupational Safety and Health, graduation requirement, p. 217

Process Technology (KPC, Kenai River Campus, 907-262-0300)
3/26/2012
Henry Haney

A.A.S. Process Technology, general requirement, p. 220 (twice)

Renewable Energy (Kodiak College, 907-486-1209)
3/26/2012
Lorraine Stewart

A.A.S. Technology, major requirement, p. 225
Chemistry Department (CPSB 101, 786-1238)

CHEM A103L, course listing, p. 356

CHEM A104L, will be a prerequisite once approved – currently a special note, p. 356

Medical Laboratory Technology (CTC, AHS 169, 786-4930)

MEDT A132, prerequisite, p. 436

MEDT A133, prerequisite, p. 436

MEDT A202, prerequisite, p. 436

MEDT A203, prerequisite, p. 436

MEDT A204, prerequisite, p. 437

MEDT A206, prerequisite, p. 437

MEDT A208, prerequisite, p. 437
Course Content Guide for **CHEM A103L**
University of Alaska Anchorage
College of Arts & Sciences

I. **Date of Initiation**: October 20, 2011

II. **Course Information**

 A. **College**: College of Arts & Sciences
 B. **Course Subject**: CHEM
 C. **Course Number**: A103L
 D. **Number of Credits**: 1
 E. **Contact Hours**: 0 + 3
 F. **Course Title**: Survey of Chemistry Laboratory
 G. **Grading Basis**: A-F
 H. **Implementation Date**: Fall 2012

I. **Course Description**: Introductory chemistry laboratory course with experiments designed to introduce students to the basics of laboratory equipment, data collection, data analysis, and reporting; and to illustrate, augment and apply concepts covered in CHEM A103. Special Note: Students who do not meet the prerequisites for this course may be administratively dropped at the discretion of the faculty. Attendance is mandatory for all chemistry laboratory courses the first week of class. Unless prior arrangements are made with the instructor, any student who does not attend the first scheduled meeting for this lab may be administratively dropped and a student on a waiting list will be added in their place. Any fees resulting from either of these drop procedures or any late registration procedure will be the responsibility of the student.

J. **Course Attributes**: GER Natural Sciences Lab only

K. **Prerequisites**: CHEM A103 with minimum grade of C or concurrent enrollment

L. **Test Scores**: N/A

M. **Corequisites**: N/A
N. **Registration Restrictions:** N/A

O. **Course Fee:** Yes

III. **Instructional Goals and Student Learning Outcomes**

A. **Course Activities:**

 Students will explore concepts and solve problems relevant to experimental and theoretical chemistry. Exercises and experiments provide students with chemical models and/or chemical data followed by questions to guide them through the learning cycle, building conceptual understanding in a process emulating the scientific method. The instructor will assist the learning process through a variety of methods that may include: lecture, group discussions, demonstration and/or discussions with individuals, groups or the entire class.

B. **Instructional Goals:**

 This course is designed to fulfill the needs of general education requirements and to provide a foundation in general chemistry and the general chemistry laboratory, specifically for health science majors. It is intended to be an introduction to the chemistry laboratory. Safety in the laboratory environment, the proper use of glassware and equipment, and an integration of chemistry concepts, mathematics, technology, problem solving and kinesthesia are emphasized.

 The instructor will:

 1. Provide students with a safe, supervised environment to encourage self confidence in lab.
 2. Provide students with standard operating procedures for each experiment and examples of experimental setups to encourage proper lab technique.
 3. Present models of the periodic table, atomic and molecular structure, chemical bonding and reactions for development of observational skills and conceptual foundations in chemistry.
 4. Pose questions to initiate discussion, help students differentiate, link and integrate ideas and develop their own concepts, to articulate their thinking and explain models and solutions.
 5. Provide multiple human health-related contexts for applying concepts and invite students to defend and verify their models and their solutions to problems.
C. **Student Learning Outcomes:**

The student will:

1. Safely and correctly demonstrate previously covered hands on skills in the chemistry laboratory.
2. Conduct laboratory work systematically by physically performing procedures as outlined by the curriculum.
3. Recognize and interpret chemical models of the periodic table, atomic and molecular structure, bonding and chemical reactions.
4. Explore and verify science methodology through measurements and chemical equations in health-related problems.
5. Demonstrate effective communication skills for discussing, applying and verifying chemistry concepts across multiple human-health related contexts.

D. **Assessment Measures:**

Various assessment tools can be used, including, but not limited to quizzes, preparatory questions sets, lab reports, homework, and practical skill evaluations.

IV. **Course Level Justification**

This course introduces students to chemistry laboratory concepts. Students develop basic laboratory skills through model exploration and verification for comprehension and retention of concepts and become acquainted with chemistry as a laboratory science discipline.

VI. **Topic Course Outline**

1. Laboratory Safety and Orientation
2. Mathematics in Chemistry
3. Introduction to the Chemistry Laboratory
4. The Use of Laboratory Glassware
5. Computers and Analytical Software Orientation
6. Plotting Measured Data to Generate a Graph
7. Synthesis of Potassium Dioxalatocuprate (II) Dihydrate
8. Solutions and Electrolytes
9. Determination of Concentration Using Spectrophotometry
10. Kinetics: Measuring Reaction Rates
11. Analysis of Vinegar by Titration
12. Determination of Buffer Capacity
VII. Suggested Texts

VIII. Bibliography

Course Action Request

University of Alaska Anchorage

Proposal to Initiate, Add, Change, or Delete a Course

<table>
<thead>
<tr>
<th>1a. School or College</th>
<th>1b. Division</th>
<th>1c. Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS CAS</td>
<td>AMSC Division of Math Science</td>
<td>CHEMISTRY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Course Prefix</th>
<th>3. Course Number</th>
<th>4. Previous Course Prefix & Number</th>
<th>5a. Credits/CEUs</th>
<th>5b. Contact Hours (Lecture + Lab)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM</td>
<td>A104</td>
<td>N/A</td>
<td>3</td>
<td>(3+0)</td>
</tr>
</tbody>
</table>

Course Title

Introduction to Organic Chemistry and Biochemistry

Intro to Org Chem/Biochem

Abbreviated Title for Transcript (30 character)

<table>
<thead>
<tr>
<th>6. Type of Course</th>
<th>7. Type of Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic</td>
<td></td>
</tr>
<tr>
<td>Preparatory/Development</td>
<td></td>
</tr>
<tr>
<td>Non-credit</td>
<td></td>
</tr>
<tr>
<td>CEU</td>
<td></td>
</tr>
<tr>
<td>Professional Development</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Type of Action</th>
<th>9. Repeat Status No</th>
<th># of Repeats</th>
<th>Max Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If a change, mark appropriate boxes:

- Prefix
- Credits
- Title
- Grading Basis
- Course Description
- Test Score Prerequisites
- Other Restrictions
- Class
- College
- Major
- Other CCG (please specify)

<table>
<thead>
<tr>
<th>10. Grading Basis</th>
<th>11. Implementation Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-F</td>
<td>From: Fall/2012 To: /9999</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. Cross Listed with</th>
<th>Stacked with</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-Listed Coordination Signature</td>
<td></td>
</tr>
</tbody>
</table>

13a. Impacted Courses or Programs:

List any programs or college requirements that require this course.

Please type into fields provided in table. If more than three entries, submit a separate table. A template is available at www.uaa.alaska.edu/governance.

<table>
<thead>
<tr>
<th>Impacted Program/Course</th>
<th>Catalog Page(s) Impacted</th>
<th>Date of Coordination</th>
<th>Chair/Coordinator Contacted</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. See attached table</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Initiator Name (typed): Colin McGill

Initiator Signed Initials: [________] Date: [________]

13b. Coordination Email

Date: 03/05/2012

submitted to Faculty Listserv: uaa-faculty@lists.uaa.alaska.edu

13c. Coordination with Library Liaison

Date: 03/05/2012

14. General Education Requirement

Mark appropriate box:

- Oral Communication
- Written Communication
- Quantitative Skills
- Humanities
- Social Sciences
- Natural Sciences
- Integrative Capstone

15. Course Description

(suggested length 20 to 50 words)

This is the second semester course in the sequence for health science majors. The course content includes common nomenclature of organic compounds, organic functional group reactions, biochemical processes and pathways, biological macromolecules and metabolites. Special Note: CHEM A104L is the lab component of this course and requires a separate registration.

<table>
<thead>
<tr>
<th>16a. Course Prerequisite(s) (list prefix and number)</th>
<th>16b. Test Score(s)</th>
<th>16c. Co-requisite(s) (concurrent enrollment required)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM A103 with minimum grade of C.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16d. Other Restriction(s)</th>
<th>16e. Registration Restriction(s) (non-codable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>College</td>
<td></td>
</tr>
<tr>
<td>Major</td>
<td></td>
</tr>
<tr>
<td>Class</td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. Mark if course has fees</th>
<th>18. Mark if course is a selected topic course</th>
</tr>
</thead>
</table>

19. Justification for Action

Course content guide update.

Initiator (faculty only) [________] Date: [________]

Initiator (TYPE NAME) [________] Date: [________]

Approved

Disapproved

Dean/Director of School/College Date: [________]

Approved

Disapproved

Undergraduate/Graduate Academic Board Chairperson Date: [________]

Approved

Disapproved

Provost or Designee Date: [________]

Approved

Disapproved

Department Chairperson Date: [________]

Approved

Disapproved

Curriculum Committee Chairperson Date: [________]
Chemistry A104 — Introduction to Organic Chemistry and Biochemistry

<table>
<thead>
<tr>
<th>Impacted Program/Course</th>
<th>Catalog Page(s) Impacted</th>
<th>Date of Coordination</th>
<th>Chair/Coordinator Contacted</th>
</tr>
</thead>
<tbody>
<tr>
<td>GER, natural sciences, p. 84</td>
<td></td>
<td>3/05/2012</td>
<td></td>
</tr>
<tr>
<td>CAS requirement, B.S. degree, natural sciences, p. 87</td>
<td></td>
<td>3/05/2012</td>
<td></td>
</tr>
<tr>
<td>School of Nursing (PSB 103, 786-4550)</td>
<td></td>
<td>3/26/2012</td>
<td>Barbara Berner</td>
</tr>
<tr>
<td>B.S. Nursing Science, admission requirement, p. 162</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.S. Nursing Science, major requirement, p. 162</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Registered Nurse Option, admission requirement, p. 163</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Registered Nurse Option, major requirement, p. 164</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dental Hygiene (AHS 160, 786-6929)</td>
<td></td>
<td>3/26/2012</td>
<td>Robin Wahto</td>
</tr>
<tr>
<td>A.A.S. Dental Hygiene, admission requirement, p. 200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.S. Dental Hygiene, admission requirement, p. 200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dietetics and Nutrition (CUDY 126, 786-4728)</td>
<td></td>
<td>3/26/2012</td>
<td>Tim Doebler</td>
</tr>
<tr>
<td>B.S. Nutrition, Community Nutrition Emphasis, support course, p. 203</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical Laboratory Technology (AHS 169, 786-4930)</td>
<td></td>
<td>3/26/2012</td>
<td>Heidi Mannion</td>
</tr>
</tbody>
</table>
A.A.S. Medical Laboratory Technology, support course, p. 215

B.S. Medical Technology, support course, p. 216

Chemistry Department (CPSB 101, 786-1238)

CHEM A104, course listing, p. 356

CHEM A104L, prerequisite, p. 356

Dental Hygiene (AHS 160, 786-6929)

DH A365, prerequisite, p. 374

Dietetics & Nutrition (CUDY 126, 786-4728)

DN A203, prerequisite, p. 376

Medical Laboratory Technology (CTC, AHS 169, 786-4930)

MEDT A202, prerequisite, p. 436

MEDT A203, prerequisite, p. 436

MEDT A204, prerequisite, p. 437

MEDT A206, prerequisite, p. 437

MEDT A208, prerequisite, p. 437

MEDT A301, prerequisite, p. 437
Nursing Sciences (CHSW, PSB 103, 786-4550) 3/26/2012 Barbara Berner

NS A216, prerequisite, p. 443
Course Content Guide for **CHEM A104**

University of Alaska Anchorage

College of Arts & Sciences

I. **Date of Initiation:** January 30, 2012

II. **Course Information:**

 A. **College:** College of Arts & Sciences

 B. **Course Subject:** CHEM

 C. **Course Number:** A104

 D. **Number of Credits:** 3

 E. **Contact Hours:** 3 + 0

 F. **Course Title:** Introduction to Organic Chemistry and Biochemistry

 G. **Grading Basis:** A – F

 H. **Implementation Date:** Fall 2012

I. **Course Description:** This is the second semester course in the sequence for health science majors. The course content includes common nomenclature of organic compounds, organic functional group reactions, biochemical processes and pathways, biological macromolecules and metabolites. Special Note: CHEM A104L is the lab component of this course and requires a separate registration.

J. **Course Attributes:** UAA GER Natural Sciences Requirement

K. **Prerequisites:** CHEM A103 with minimum grade of C

L. **Test Scores:** N/A

M. **Co-requisites:** N/A

N. **Registration Restrictions:** N/A
O. Course Fee: No

III. Instructional Goals and Student Learning Outcomes:

A. Course Activities:

Students will explore concepts and solve problems relevant to current topics in chemistry including historical discoveries and technological advances. Activities provide students with chemical models and/or chemical data followed by questions to guide them through the learning cycle, building conceptual understanding in a process emulating the scientific method. The instructor will assist in the learning process through a variety of methods that may include lectures, facilitation of class discussions, and demonstrations.

B. Instructional Goals:

This course is designed to fulfill the needs of general education requirements and to provide a foundation in general chemistry specifically for health science majors. It is intended to be a survey of organic and biochemistry with significant emphasis on health-related material. Concepts in applying organic compound nomenclature rules, organic functional group reactions and reactivities, biochemical processes, biological macromolecules and metabolites are emphasized.

The instructor will:
1. Present basic nomenclature rules in organic chemistry and organic functional group reactivities and biological chemical reactions for investigation and development of observational skills and conceptual foundations in chemistry.
2. Present questions to initiate discussion, help students differentiate, link and integrate ideas and develop their own concepts, to articulate their thinking and explain models and solutions.
3. Provide multiple human health-related contexts for applying concepts and invite students to defend and verify their models and their solutions to problems.

C. Student Learning Outcomes:

The student will:
1. Recognize and use appropriate organic compound nomenclature.
2. Explore and solve chemical problems relevant to current health science using organic functional group reactivities.
3. Demonstrate basic skills of recognizing biochemical processes involving biological macromolecules and metabolites and applying their models and solutions to health-related problems in context of historical discoveries and technological advances.
D. **Assessment Measures:**

Various assessment tools can be used at the instructor’s discretion, including but not limited to quizzes, weekly homework and exams.

IV. **Course Level Justification:**

This course introduces students to organic, and biochemistry concepts in atomic and molecular structure and in atomic and molecular interactions. Students learn basic skills in model exploration and verification for comprehension and retention of concepts and become acquainted with chemistry as a science discipline and how it pertains to the health sciences.

V. **Topical Course Outline:**

1. Benzene and its derivatives
2. Amines
3. Aldehydes and Ketones
4. Alcohols, Ethers, Esters and Thiols
5. Carboxylic Acids
6. Carboxylic Anhydrides
7. Amides
8. Chirality and Carbohydrates
9. Lipids
10. Proteins
11. Enzymes
12. Bioenergetics
13. Biochemical Pathways

VI. **Suggested Texts:**

VII. Bibliography:

Course Action Request

University of Alaska Anchorage

Proposal to Initiate, Add, Change, or Delete a Course

<table>
<thead>
<tr>
<th>1a. School or College</th>
<th>1b. Division</th>
<th>1c. Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS CAS</td>
<td>AMSC Division of Math Science</td>
<td>CHEMISTRY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Course Prefix</th>
<th>3. Course Number</th>
<th>4. Previous Course Prefix & Number</th>
<th>5a. Credits/CEUs</th>
<th>5b. Contact Hours (Lecture + Lab)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM</td>
<td>A104L</td>
<td>N/A</td>
<td>1</td>
<td>(0+3)</td>
</tr>
</tbody>
</table>

6. Complete Course Title

Introduction to Organic Chemistry and Biochemistry Laboratory

Intro to Org Chem/Biochem Lab

Abbreviated Title for Transcript (30 character)

7. Type of Course

- [x] Academic
- [] Preparatory/Development
- [] Non-credit
- [] CEU
- [] Professional Development

8. Type of Action:

- [x] Change
- [] Add
- [] Delete

If a change, mark appropriate boxes:

- [] Prefix
- [] Credits
- [] Title
- [] Grading Basis
- [] Contact Hours
- [] Course Description
- [] Course Prerequisite(s)
- [] Text Score Prerequisite(s)
- [] Other Restrictions
 - [] Class
 - [] Level
 - [] College
 - [] Major
- [x] Other CCG (please specify)

9. Repeat Status No

- [] # of Repeats
- [] Max Credits

10. Grading Basis

- [x] A-F
- [] P/NP
- [] NG

11. Implementation Date

- [] semester/year

From: Fall/2012
To: /9999

12. [] Cross Listed with

- [] Stacked with

Cross-Listed Coordination Signature

13a. Impacted Courses or Programs: List any programs or college requirements that require this course.

Please type into fields provided in table. If more than three entries, submit a separate table. A template is available at www.uaa.alaska.edu/governance.

<table>
<thead>
<tr>
<th>Impacted Program/Course</th>
<th>Catalog Page(s) Impacted</th>
<th>Date of Coordination</th>
<th>Chair/Coordinator Contacted</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. See attached table</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Initiator Name (typed): Coln McGill
Initiator Signed Initials: __________ Date: __________________

13b. Coordination Email

Date: 03/05/2012
submitted to Faculty Listserv: uaa-faculty@lists.uaa.alaska.edu

13c. Coordination with Library Liaison

Date: 03/05/2012

14. General Education Requirement

Mark appropriate box:

- [] Oral Communication
- [] Written Communication
- [] Social Sciences
- [x] Natural Sciences
- [] Integrative Capstone

15. Course Description *(suggested length 20 to 50 words)*

Second semester introductory chemistry laboratory course. Experiments are designed to reinforce concepts students have been exposed to regarding the basics of laboratory equipment, data collection, data analysis, and reporting. This course illustrates, augments and applies concepts covered in CHEM A104. Special Note: Students who do not meet the prerequisites for this course may be administratively dropped at the discretion of the faculty. Attendance is mandatory for all chemistry laboratory courses the first week of class. Unless prior arrangements are made with the instructor, any student who does not attend the first scheduled meeting for this lab may be administratively dropped and a student on a waiting list will be added in their place. Any fees resulting from either of these drop procedures or any late registration procedure will be the responsibility of the student. Pregnant students should be aware that they will be using chemicals in this course that are teratogenic and may cause harm to unborn children.

16a. Course Prerequisite(s) *(list prefix and number)*

CHEM A103L with minimum grade of C and (CHEM A104 with minimum grade of C or concurrent enrollment)

16b. Test Score(s)

16c. Co-requisite(s) *(concurrent enrollment required)*

16d. Other Restriction(s)

- [] College
- [] Major
- [] Class
- [] Level

16e. Registration Restriction(s) *(non-codable)*

17. [x] Mark if course has fees

18. [] Mark if course is a selected topic course

19. Justification for Action

This course requires pre-existing chemistry laboratory skills and knowledge of laboratory safety practices. Course content guide update. Course description update.
<table>
<thead>
<tr>
<th>Initiative (faculty only)</th>
<th>Date</th>
<th>Approved</th>
<th>Disapproved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiator (TYPE NAME)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dean/Director of School/College</td>
<td>Date</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department Chairperson</td>
<td>Date</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undergraduate/Graduate Academic</td>
<td>Date</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curriculum Committee Chairperson</td>
<td>Date</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provost or Designee</td>
<td>Date</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHEM A104L – Introduction to Organic Chemistry and Biochemistry Laboratory

<table>
<thead>
<tr>
<th>Impacted Program/Course</th>
<th>Catalog Page(s) Impacted</th>
<th>Date of Coordination</th>
<th>Chair/Coordinator Contacted</th>
</tr>
</thead>
<tbody>
<tr>
<td>GER, natural sciences, p. 84</td>
<td></td>
<td>3/05/2012</td>
<td></td>
</tr>
<tr>
<td>CAS requirement, B.S. degree, natural sciences, p. 87</td>
<td></td>
<td>3/05/2012</td>
<td></td>
</tr>
</tbody>
</table>

School of Nursing (PSB 103, 786-4550)

- B.S. Nursing Science, admission requirement, p. 162
- B.S. Nursing Science, major requirement, p. 162
- Registered Nurse Option, admission requirement, p. 163
- Registered Nurse Option, major requirement, p. 164

Dental Hygiene (AHS 160, 786-6929)

- B.S. Dental Hygiene, admission requirement, p. 200, 201
- B.S. Dental Hygiene, support course, p. 201

Dietetics and Nutrition (CUDY 126, 786-4728)

- B.S. Nutrition, Community Nutrition Emphasis, support course, p. 203

Medical Laboratory Technology (AHS 169, 786-4930)

- B.S. Medical Technology, support course, p. 216

3/26/2012 Barbara Berner

3/26/2012 Tim Doebler

3/26/2012 Heidi Mannion
Chemistry Department (CPSB 101, 786-1238)
CHEM A104L, course listing, p. 356

Nursing Sciences (CHSW, PSB 103, 786-4550)
NS A216, prerequisite, p. 443
I. **Date of Initiation:** October 20, 2011

II. **Course Information**

A. **College:** College of Arts & Sciences

B. **Course Subject:** CHEM

C. **Course Number:** A104L

D. **Number of Credits:** 1

E. **Contact Hours:** 0 + 3

F. **Course Title:** Introduction to Organic and Biochemistry Laboratory

G. **Grading Basis:** A-F

H. **Implementation Date:** Fall 2012

I. **Course Description:** Second semester introductory chemistry laboratory course. Experiments are designed to reinforce concepts students have been exposed to regarding the basics of laboratory equipment, data collection, data analysis, and reporting. This course illustrates, augments and applies concepts covered in CHEM A104. Special Note: Students who do not meet the prerequisites for this course may be administratively dropped at the discretion of the faculty. Attendance is mandatory for all chemistry laboratory courses the first week of class. Unless prior arrangements are made with the instructor, any student who does not attend the first scheduled meeting for this lab may be administratively dropped and a student on a waiting list will be added in their place. Any fees resulting from either of these drop procedures or any late registration procedure will be the responsibility of the student. Pregnant students should be aware that they will be using chemicals in this course that are teratogenic and may cause harm to unborn children.

J. **Course Attributes:** GER Natural Sciences Lab only

K. **Prerequisites:** CHEM A103L with minimum grade of C and (CHEM A104 with minimum grade of C or concurrent enrollment)
L. **Test Scores:** N/A

M. **Corequisites:** N/A

N. **Registration Restrictions:** N/A

O. **Course Fee:** Yes

III. Instructional Goals and Student Learning Outcomes

A. Course Activities:

Students will explore concepts and solve problems relevant to experimental and theoretical chemistry. Exercises and experiments provide students with chemical models and/or chemical data followed by questions to guide them through the learning cycle, building conceptual understanding in a process emulating the scientific method. The instructor will assist the learning process through a variety of methods that may include: lecture, group discussions, demonstration and/or discussions with individuals, groups or the entire class.

B. Instructional Goals:

This course is designed to fulfill the needs of general education requirements and to provide a foundation in general chemistry and the general chemistry laboratory, specifically for health science majors. It is intended to be an introduction to the chemistry laboratory. Safety in the laboratory environment, the proper use of glassware and equipment, and an integration of chemistry concepts, mathematics, technology, problem solving and kinesthesis are emphasized.

The instructor will:

1. Provide students with a safe, supervised environment to encourage self confidence in the lab.
2. Provide students with standard operating procedures for each experiment and examples of experimental setups to encourage proper lab technique.
3. Present models of the periodic table, atomic and molecular structure, chemical bonding and reactions for development of observational skills and conceptual foundations in chemistry.
4. Present questions to initiate discussion, help students differentiate, link and integrate ideas and develop their own concepts, to articulate their thinking and explain models and solutions.
5. Provide multiple human health-related contexts for applying concepts and invite students to defend and verify their models and their solutions to problems.

C. **Student Learning Outcomes:**

The student will:

1. Safely and correctly demonstrate previously covered skills in the chemistry laboratory.
2. Conduct laboratory work systematically by following procedures as outlined by the curriculum.
3. Recognize and interpret chemical models of the periodic table, atomic and molecular structure, bonding and chemical reactions.
4. Demonstrate science methodology with emphasis on exploring and verifying measurements and chemical equations in health-related problems rather than memorizing facts and answering “algorithmic” questions.
5. Demonstrate effective communication skills for discussing, applying and verifying chemistry concepts.

D. **Assessment Measures:**

Various assessment tools can be used, including, but not limited to quizzes, preparatory questions sets, lab reports, homework, and comprehensive exams.

IV. **Course Level Justification**

This course introduces students to chemistry laboratory concepts. Students develop basic laboratory skills through model exploration and verification for comprehension and retention of concepts and become acquainted with chemistry as a laboratory science discipline.

V. **Topic Course Outline**

1. Laboratory Safety and Orientation
2. Nomenclature
3. Identification of Alcohols and Phenols
4. Properties of Carboxylic Acids and Esters
5. Preparation of Acetylsalicylic Acid
6. Using Molecular Models to Explore the Structure of Organic Compounds
7. Stereochemistry
8. Carbohydrates
9. Isolation of Caffeine from Tea Leaves
10. Preparation and Properties of a Soap
11. Acid-Base Properties of Amino Acids
12. Quantitative Analysis of Vitamin C Contained in Foods

VI. Suggested Texts

VII. Bibliography

<table>
<thead>
<tr>
<th>1a. School or College</th>
<th>1b. Division</th>
<th>1c. Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS CAS</td>
<td>AMSC Division of Math Science</td>
<td>CHEMISTRY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Course Prefix</th>
<th>3. Course Number</th>
<th>4. Previous Course Prefix & Number</th>
<th>5a. Credits/CEUs</th>
<th>5b. Contact Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM</td>
<td>A105</td>
<td>N/A</td>
<td>3</td>
<td>(Lecture + Lab)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(3+0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. Complete Course Title</th>
<th>Abbreviated Title for Transcript (30 character)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Chemistry I</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. Type of Course</th>
<th>8. Type of Action:</th>
<th>9. Repeat Status No</th>
<th>10. Grading Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>A-F</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P/NP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Implementation Date</th>
<th>semester/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>From: Fall/2012</td>
<td>To: /9999</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. Cross Listed with</th>
<th>Stacked with</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13a. Impacted Courses or Programs:</th>
<th>13b. Coordination Email</th>
<th>13c. Coordination with Library Liaison</th>
</tr>
</thead>
<tbody>
<tr>
<td>List any programs or college requirements that require this course.</td>
<td>Date: 03/05/2012</td>
<td>Date: 03/05/2012</td>
</tr>
<tr>
<td>Please type into fields provided in table. If more than three entries, submit a separate table. A template is available at www.uaa.alaska.edu/governance.</td>
<td>submitted to Faculty Listserv: (uaa-faculty@lists.uaa.alaska.edu)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. General Education Requirement</th>
<th>Mark appropriate box:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oral Communication</td>
</tr>
<tr>
<td></td>
<td>Written Communication</td>
</tr>
<tr>
<td></td>
<td>Social Sciences</td>
</tr>
<tr>
<td></td>
<td>Quantitative Skills</td>
</tr>
<tr>
<td></td>
<td>Humanities</td>
</tr>
<tr>
<td></td>
<td>Fine Arts</td>
</tr>
<tr>
<td></td>
<td>Natural Sciences</td>
</tr>
<tr>
<td></td>
<td>Integrative Capstone</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. Course Description (suggested length 20 to 50 words)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to general chemistry for science majors which includes topics in elements and compounds, the periodic table, atomic and subatomic theory and spectroscopy, bonding, various chemical reactions, thermodynamics, atomic and molecular interactions in gases, liquids, solids and solution chemistry. Special Note: Assumes prior knowledge of college preparatory high school chemistry and algebra. CHEM A105L is the laboratory component of this course and requires a separate registration.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16a. Course Prerequisite(s)</th>
<th>16b. Test Score(s)</th>
<th>16c. Co-requisite(s) (concurrent enrollment required)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(MATH A105, or MATH A107, or MATH A108, or MATH A200) with minimum grade of C.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16d. Other Restriction(s)</th>
<th>16e. Registration Restriction(s) (non-codable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>College</td>
<td>CHEM A055 with a minimum grade of C or college preparatory high school chemistry with a minimum grade of C. If the MATH A105 prerequisite is not satisfied, appropriate scores on the SAT or ACT tests or appropriate scores on a UAA-approved placement test such as the Accuplacer Placement test.</td>
</tr>
<tr>
<td>Major</td>
<td></td>
</tr>
<tr>
<td>Class</td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. Mark if course has fees</th>
<th>18. Mark if course is a selected topic course</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>Approved</th>
<th>Disapproved</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiator (faculty only)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initiator (TYPE NAME)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dean/Director of School/College</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department Chairperson</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undergraduate/Graduate Academic Board Chairperson</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curriculum Committee Chairperson</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provost or Designee</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHEM A105 – General Chemistry I

<table>
<thead>
<tr>
<th>Impacted Program/Course</th>
<th>Catalog Page(s) Impacted</th>
<th>Date of Coordination</th>
<th>Chair/Coordinator Contacted</th>
</tr>
</thead>
<tbody>
<tr>
<td>GER, natural sciences, p. 84</td>
<td></td>
<td>3/05/2012</td>
<td></td>
</tr>
<tr>
<td>CAS requirement, B.S. degree, natural sciences, p. 87</td>
<td></td>
<td>3/05/2012</td>
<td></td>
</tr>
</tbody>
</table>

Biological Sciences (CPSB 101P, 786-4770)

- B.A. Biology, major requirement, p. 96
- B.S. Biology, major requirement, p. 96

Chemistry (CPSB 101Q, 786-1238)

- B.S. Chemistry, major requirement, chemistry option, p. 99
- B.S. Chemistry, major requirement, biochemistry option, p. 99
- Chemistry, minor requirement, p. 99

Geological Sciences (CPSB 101, 786-4940)

- B.S. Geological Sciences, major requirement, p. 106

Natural Sciences (CPSB 101P, 786-4770)

- B.S. Natural Sciences, major requirement, Environmental Sciences Option, p. 120
B.S. Natural Sciences, major requirement, Pre-Health Professions Option, p. 122

B.S. Natural Sciences, major requirement, General Sciences Option, p. 123

Computer Electronics (Kenai Peninsula College, 907-262-0330)
A.A.S. Computer Electronics, general requirement, p. 187

Construction Management (UC 130, 786-6465)
B.S. Construction Management, support course, p. 193

Dental Hygiene (AHS 160, 786-6929)
A.A.S. Dental Hygiene, admission requirement, p. 200

*B.S. Dental Hygiene, admission requirement, p. 200

Dietetics and Nutrition (CUDY 126, 786-4728)
B.S. Dietetics, support course, p. 202

B.S. Nutrition, Community Nutrition Emphasis, major requirement for RD status, p. 204

B.S. Nutrition, Nutrition Science Emphasis, support course, p. 204

Industrial Process Instrumentation, (Kenai Peninsula College, 907-262-0330)
3/26/2012 Henry Haney
<table>
<thead>
<tr>
<th>Course</th>
<th>Instructor</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical Laboratory Technology (AHS 169, 786-4930)</td>
<td>Heidi Mannion</td>
<td>3/26/2012</td>
</tr>
<tr>
<td>B.S. Medical Technology, support course</td>
<td></td>
<td>p. 216</td>
</tr>
<tr>
<td>A.A.S. Technology, major requirement</td>
<td></td>
<td>p. 225</td>
</tr>
<tr>
<td>Civil Engineering (ENGR 201, 786-1900)</td>
<td>Ziata Lokteva</td>
<td>3/26/2012</td>
</tr>
<tr>
<td>B.S. Civil Engineering, civil engineering requirements</td>
<td></td>
<td>p. 234</td>
</tr>
<tr>
<td>Engineering: Computer systems, Electrical, and Mechanical Engineering (ENGR 201, 786-1900)</td>
<td>Janelle North</td>
<td>3/26/2012</td>
</tr>
<tr>
<td>B.S. Engineering, major requirement</td>
<td></td>
<td>p. 237</td>
</tr>
<tr>
<td>Minor, Engineering, prerequisite</td>
<td></td>
<td>p. 243</td>
</tr>
<tr>
<td>Biological Sciences (CPSB 101P, 786-4770)</td>
<td>Fred Rainey</td>
<td>3/26/2012</td>
</tr>
<tr>
<td>BIOL A115, prerequisite</td>
<td></td>
<td>p. 344</td>
</tr>
<tr>
<td>BIOL A116, prerequisite</td>
<td></td>
<td>p. 344</td>
</tr>
<tr>
<td>BIOL A242, prerequisite</td>
<td></td>
<td>p. 345</td>
</tr>
</tbody>
</table>
BIOL A252, prerequisite, p. 345

Chemistry Department (CPSB 101, 786-1238) 3/26/2012 Eric Holmberg
CHEM A105, course listing, p. 356
CHEM A105L, prerequisite, p. 356
CHEM A106, prerequisite, p. 356

Electrical Engineering (ENGR 201, 786-1900) 3/26/2012 Janelle North
EE A441, prerequisite, p. 394

Geological Sciences (CPSB 101R, 786-4940) 3/26/2012 LeeAnn Munk
GEOL A340, prerequisite, p. 409

Medical Laboratory Technology (CTC, AHS 169, 786-4930) 3/26/2012 Heidi mannion
MEDT A132, prerequisite, p. 436
MEDT A133, prerequisite, p. 436
MEDT A202, prerequisite, p. 436
MEDT A203, prerequisite, p. 436
MEDT A204, prerequisite, p. 437
MEDT A206, prerequisite, p. 437

MEDT A208, prerequisite, p. 437
Course Content Guide for CHEM A105

University of Alaska Anchorage
College of Arts & Sciences

I. **Date of Initiation:** January 30, 2012

II. **Course Information:**

 A. **College:** College of Arts & Sciences

 B. **Course Subject:** CHEM

 C. **Course Number:** A105

 D. **Number of Credits:** 3

 E. **Contact Hours:** 3 + 0

 F. **Course Title:** General Chemistry I

 G. **Grading Basis:** A – F

 H. **Implementation Date:** Fall 2012

I. **Course Description:** Introduction to general chemistry for science majors which includes topics in elements and compounds, the periodic table, atomic and subatomic theory and spectroscopy, bonding, various chemical reactions, thermodynamics, atomic and molecular interactions in gases, liquids, solids and solution chemistry. Special Note: Assumes prior knowledge of college preparatory high school chemistry and algebra. CHEM A105L is the laboratory component of this course and requires a separate registration.

J. **Course Attributes:** UAA GER Natural Sciences Requirement.

K. **Prerequisites:** (MATH A105, or MATH A107, or MATH A108, or MATH A109, or MATH A200) with minimum grade of C.

L. **Test Scores:** N/A

M. **Co-requisites:** N/A
N. **Registration Restrictions:** CHEM A055 with a minimum grade of C or college preparatory high school chemistry with a minimum grade of C. If the MATH A105 prerequisite is not satisfied, appropriate scores on the SAT or ACT tests or appropriate scores on a UAA-approved placement test such as the Accuplacer placement test.

O. **Course Fee:** No

III. **Instructional Goals and Student Learning Outcomes:**

A. **Course Activities:**

Students will explore concepts and solve problems relevant to current topics in chemistry. Activities provide students with chemical models and/or chemical data followed by questions to guide them through the learning cycle, building conceptual understanding in a process emulating the scientific method. The instructor will assist in the learning process through a variety of methods that may include lectures, facilitation of class discussions, and demonstrations.

B. **Instructional Goals:**

This course is designed to fulfill the needs of general education requirements and to provide a foundation in general chemistry specifically for science and engineering majors. It involves a significantly more rigorous approach than CHEM A103/A104, and does not concentrate specifically on health related problems nor emphasize Organic or Biochemistry. Concepts in atomic and molecular structure, bonding, and chemical reactions, skills in model exploration, and hypotheses building and testing using problem solving skills are emphasized.

The instructor will:

1. Present chemical models of atomic and molecular structure, bonding and chemical reactions for investigation and develop problem solving and observational skills on problems relevant to current issues and topics in chemistry.
2. Present convergent and divergent questions to initiate discussion on the relevance of current chemical models to observe and understand natural phenomena, help students differentiate, link and integrate ideas and develop their own concepts, to articulate their thinking and explain models and solutions.
3. Provide multiple historical, cultural and socially relevant contexts for applying concepts and quantitative skills.
C. **Student Learning Outcomes:**

The student will:
1. Recognize and interpret chemical models of atomic and molecular structure, bonding and chemical reactions.
2. Apply observation, investigative and problem solving skills on problems in chemistry.
3. Demonstrate skills in science methodology such as exploring and selecting appropriate models.
4. Solve problems related to current chemistry topics that pertain to broad societal issues.
5. Create, communicate, defend and verify their solutions to problems across multiple contexts.

D. **Assessment Measures:**

Various assessment tools can be used at the instructor’s discretion, including but not limited to quizzes, weekly homework and exams.

IV. **Course Level Justification:**

This course introduces students to general chemistry concepts in atomic and molecular structure and in atomic and molecular interactions. Students learn basic skills in model exploration and verification for comprehension and retention of concepts and become acquainted with chemistry as a science discipline. This course serves as a preparatory course for CHEM A106.

V. **Topical Course Outline:**

1. Chemical Foundations
2. Atoms, Molecules, and Ions
3. Stoichiometry
4. Types of Chemical Reactions and Solution Stoichiometry
5. Gases
6. Thermochemistry
7. Atomic Structure and Periodicity
8. Bonding: General Concepts
9. Covalent Bonding: Orbitals
10. Liquids and Solids
11. Properties of Solutions
VI. **Suggested Texts:**

VII. **Bibliography:**

Course Action Request
University of Alaska Anchorage
Proposal to Initiate, Add, Change, or Delete a Course

<table>
<thead>
<tr>
<th>1a. School or College</th>
<th>AS CAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b. Division</td>
<td>AMSC Division of Math Science</td>
</tr>
<tr>
<td>1c. Department</td>
<td>CHEMISTRY</td>
</tr>
<tr>
<td>2. Course Prefix</td>
<td>CHEM</td>
</tr>
<tr>
<td>3. Course Number</td>
<td>A105L</td>
</tr>
<tr>
<td>4. Previous Course Prefix & Number</td>
<td>N/A</td>
</tr>
<tr>
<td>5a. Credits/CEUs</td>
<td>1</td>
</tr>
<tr>
<td>5b. Contact Hours</td>
<td>(Lecture + Lab) (0+3)</td>
</tr>
</tbody>
</table>

6. Complete Course Title
General Chemistry I Laboratory

7. Type of Course
- [x] Academic
- [] Preparatory/Development
- [] Non-credit
- [] CEU
- [] Professional Development

8. Type of Action: [] Add or [] Change or [] Delete
If a change, mark appropriate boxes:
- [] Prefix
- [] Credits
- [] Title
- [] Grading Basis
- [x] Course Description
- [] Cross-Listed/Stacked
- [] Test Score Prerequisites
- [] Co-requisites
- [] Other Restrictions
- [] Registration Restrictions
- [] Credits
- [] Contact Hours
- [] Repeat Status
- [] Course Number
- [] Cross-Listed/Stacked
- [] Course Prerequisites
- [] Co-requisites
- [] Registration Restrictions
- [] Other CCG (please specify)

9. Repeat Status No # of Repeats Max Credits
- [] 1

10. Grading Basis
- [x] A-F
- [] P/NP
- [] NG

11. Implementation Date
- **From:** Fall/2012
- **To:** 9999

12. Cross Listed with
- []
- [] Stacked with

13a. Impacted Courses or Programs:
List any programs or college requirements that require this course.

13b. Coordination Email
- Date: 03/05/2012

13c. Coordination with Library Liaison
- Date: 03/05/2012

14. General Education Requirement
Mark appropriate box:
- [] Oral Communication
- [] Written Communication
- [] Social Sciences
- [x] Quantitative Skills
- [] Natural Sciences
- [] Fine Arts
- [] Humanities
- [] Integrative Capstone

15. Course Description
(Suggested length 20 to 50 words)
Introductory chemistry laboratory course with experiments designed to introduce students to the basics of laboratory equipment, data collection, data analysis, and reporting; and to illustrate, augment and apply concepts covered in CHEM A105. Special Note: Students who do not meet the prerequisites for this course may be administratively dropped at the discretion of the faculty. Attendance is mandatory for all chemistry laboratory courses the first week of class. Unless prior arrangements are made with the instructor, any student who does not attend the first scheduled meeting for this lab may be administratively dropped and a student on a waiting list will be added in their place. Any fees resulting from either of these drop procedures or any late registration procedure will be the responsibility of the student.

16a. Course Prerequisite(s)
- CHEM A105 with minimum grade of C or concurrent enrollment

16b. Test Score(s)

16c. Co-requisite(s)
(Concurrent enrollment required)

16d. Other Restriction(s)
- [] College
- [] Major
- [] Class
- [] Level

16e. Registration Restriction(s)
(Non-codable)

17. Mark if course has fees
- [x]

18. Mark if course is a selected topic course
- []

19. Justification for Action
Clarification of prerequisites. Course content guide update.
<table>
<thead>
<tr>
<th>Initiator (faculty only)</th>
<th>Date</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Initiator (TYPE NAME)</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Approved</td>
</tr>
<tr>
<td>□ Disapproved</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department Chairperson</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Approved</td>
<td></td>
</tr>
<tr>
<td>□ Disapproved</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Curriculum Committee Chairperson</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Approved</td>
<td></td>
</tr>
<tr>
<td>□ Disapproved</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dean/Director of School/College</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Approved</td>
<td></td>
</tr>
<tr>
<td>□ Disapproved</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Undergraduate/Graduate Academic Board Chairperson</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Approved</td>
<td></td>
</tr>
<tr>
<td>□ Disapproved</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Provost or Designee</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Approved</td>
<td></td>
</tr>
<tr>
<td>□ Disapproved</td>
<td></td>
</tr>
</tbody>
</table>

50
<table>
<thead>
<tr>
<th>Impacted Program/Course</th>
<th>Catalog Page(s) Impacted</th>
<th>Date of Coordination</th>
<th>Chair/Coordinator Contacted</th>
</tr>
</thead>
<tbody>
<tr>
<td>GER, natural sciences, p. 84</td>
<td></td>
<td>3/05/2012</td>
<td></td>
</tr>
<tr>
<td>CAS requirement, B.S. degree, natural sciences, p. 87</td>
<td></td>
<td>3/05/2012</td>
<td></td>
</tr>
<tr>
<td>Biological Sciences (CPSB 101P, 786-4770)</td>
<td></td>
<td>3/26/2012</td>
<td>Fred Rainey</td>
</tr>
<tr>
<td>B.A. Biology, major requirement, p. 96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.S. Biology, major requirement, p. 96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry (CPSB 101Q, 786-1238)</td>
<td></td>
<td>3/26/2012</td>
<td>Eric Holmberg</td>
</tr>
<tr>
<td>B.S. Chemistry, major requirement, chemistry option, p. 99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.S. Chemistry, major requirement, biochemistry option, p. 99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry, minor requirement, p. 99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geological Sciences (CPSB 101, 786-4940)</td>
<td></td>
<td>3/26/2012</td>
<td>LeeAnn Munk</td>
</tr>
<tr>
<td>B.S. Geological Sciences, major requirement, p. 106</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Sciences (CPSB 101P, 786-4770)</td>
<td></td>
<td>3/26/2012</td>
<td>Fred Rainey</td>
</tr>
<tr>
<td>B.S. Natural Sciences, major requirement, Environmental Sciences Option, p. 120</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
B.S. Natural Sciences, major requirement, Pre-Health Professions Option, p. 122

B.S. Natural Sciences, major requirement, General Sciences Option, p. 123

Computer Electronics (Kenai Peninsula College, 907-262-0330)
3/26/2012
Rich Kochis

A.A.S. Computer Electronics, general requirement, p. 187

Construction Management (UC 130, 786-6465)
3/26/2012
Don Ketner

B.S. Construction Management, support course, p. 193

Dental Hygiene (AHS 160, 786-6929)
3/26/2012
Robin Wahto

B.S. Dental Hygiene, admission requirement, p. 200, 201

B.S. Dental Hygiene, support course, p. 201

Dietetics and Nutrition (CUDY 126, 786-4728)
3/26/2012
Tim Doebler

B.S. Dietetics, support course, p. 202

B.S. Nutrition, Community Nutrition Emphasis, major requirement for RD status, p. 204

B.S. Nutrition, Nutrition Science Emphasis, support course, p. 204

Industrial Process Instrumentation, (Kenai Peninsula College, 907-262-0330)
3/26/2012
Henry Haney
A.A.S. Industrial Process Instrumentation, general requirement, p. 210

Medical Laboratory Technology (AHS 169, 786-4930) 3/26/2012 Heidi Mannion

B.S. Medical Technology, support course, p. 216

Renewable Energy (Kodiak College, 907-486-1209) 3/26/2012 Lorraine Stewart

A.A.S. Technology, major requirement, p. 225

Civil Engineering (ENGR 201, 786-1900) 3/26/2012 Ziata Lokteva

B.S. Civil Engineering, civil engineering requirements, p. 234

Engineering: Computer systems, Electrical, and Mechanical Engineering (ENGR 201, 786-1900) 3/26/2012 Janelle North

B.S. Engineering, major requirement, p. 237

Biological Sciences (CPSB 101P, 786-4770) 3/26/2012 Fred Rainey

BIOL A115, prerequisite, p. 344

BIOL A116, prerequisite, p. 344

BIOL A242, prerequisite, p. 345

BIOL A252, prerequisite, p. 345
Chemistry Department (CPSB 101Q, 786-1238) 3/26/2012 Eric Holmberg

CHEM A105L, course listing, p. 356
CHEM A106L, prerequisite, p. 356

Medical Laboratory Technology (CTC, AHS 169, 786-4930) 3/26/2012 Heidi Mannion

MEDT A132, prerequisite, p. 436
MEDT A133, prerequisite, p. 436
MEDT A202, prerequisite, p. 436
MEDT A203, prerequisite, p. 436
MEDT A204, prerequisite, p. 437
MEDT A206, prerequisite, p. 437
MEDT A208, prerequisite, p. 437
Course Content Guide for **CHEM A105L**
University of Alaska Anchorage
College of Arts & Sciences

I. **Date of Initiation:** October 20, 2011

II. **Course Information**

A. **College:** College of Arts & Sciences
B. **Course Subject:** CHEM
C. **Course Number:** A105L
D. **Number of Credits:** 1
E. **Contact Hours:** 0 + 3
F. **Course Title:** General Chemistry I Laboratory
G. **Grading Basis:** A-F
H. **Implementation Date:** Fall 2012

I. **Course Description:** Introductory chemistry laboratory course with experiments designed to introduce students to the basics of laboratory equipment, data collection, data analysis, and reporting; and to illustrate, augment and apply concepts covered in CHEM A105. Special Note: Students who do not meet the prerequisites for this course may be administratively dropped at the discretion of the faculty. Attendance is mandatory for all chemistry laboratory courses the first week of class. Unless prior arrangements are made with the instructor, any student who does not attend the first scheduled meeting for this lab may be administratively dropped and a student on a waiting list will be added in their place. Any fees resulting from either of these drop procedures or any late registration procedure will be the responsibility of the student.

J. **Course Attributes:** GER Natural Sciences Lab only
K. **Prerequisites:** CHEM A105 with minimum grade of C or concurrent enrollment

L. **Test Scores:** N/A

M. **Corequisites:** N/A

N. **Registration Restrictions:** N/A

O. **Course Fee:** Yes

III. **Instructional Goals and Student Learning Outcomes**

A. **Course Activities:**

Students will explore concepts and solve problems relevant to experimental and theoretical chemistry. Exercises and experiments provide students with chemical models and/or chemical data followed by questions to guide them through the learning cycle, building conceptual understanding in a process emulating the scientific method. The instructor will assist the learning process through a variety of methods that may include lecture, group discussions, demonstration and/or discussions with individuals, groups or the entire class.

B. **Instructional Goals:**

This course is designed to fulfill the needs of general education requirements and to provide a foundation in general chemistry and the general chemistry laboratory. It is intended to be an introduction to the chemistry laboratory. Safety in the laboratory environment, the proper use of glassware and equipment, and an integration of chemistry concepts, mathematics, technology, problem solving and kinesthesis are emphasized.

The instructor will:

1. Provide students with a safe, supervised environment.
2. Supply students with standard operating procedures for each experiment and examples of experimental setups to instruct proper lab technique.
3. Present models of the periodic table, atomic and molecular structure, chemical bonding and reactions for development of observational skills and conceptual foundations in chemistry.
4. Present questions to initiate discussion, help students integrate chemistry concepts, and explain models and solutions.

C. Student Learning Outcomes:

The student will:

1. Safely and correctly repeat previously covered skills in the chemistry laboratory.
2. Conduct laboratory work systematically by following procedures as outlined by the curriculum.
3. Recognize and interpret chemical models of the periodic table, atomic and molecular structure, bonding and chemical reactions.
4. Demonstrate science methodology with emphasis on exploring and verifying measurements and chemical.
5. Demonstrate effective communication skills for discussing, applying and verifying chemistry concepts.

D. Assessment Measures:

Various assessment tools can be used, including, but not limited to quizzes, preparatory questions sets, lab reports, homework, and practical skill evaluations.

IV. Course Level Justification

This course introduces students to chemistry laboratory concepts. Students develop basic laboratory skills through model exploration and verification for comprehension and retention of concepts and become acquainted with chemistry as a laboratory science discipline.

V. Topic Course Outline

1. Laboratory Safety and Orientation
2. Mathematics in Chemistry
3. Introduction to the Chemistry Laboratory
4. The Use of Laboratory Glassware
5. Computers and Analytical Software Orientation
6. Solution Preparation and pH
7. Determination of Concentration Using Spectrophotometry
8. Determination of the Molar Volume of H₂ Gas
9. Solutions, Electrolytes and Conductivity
10. Hardware Models: Limiting Reactant and Theoretical Yield
11. Synthesis of Potassium Dioxalatocuprate (II) Dihydrate
12. Calorimetry and the Enthalpies of Neutralization
VI. **Suggested Texts**

VII. **Bibliography**

Course Action Request

University of Alaska Anchorage

Proposal to Initiate, Add, Change, or Delete a Course

<table>
<thead>
<tr>
<th>1a. School or College</th>
<th>1b. Division</th>
<th>1c. Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS CAS</td>
<td>AMSC Division of Math Science</td>
<td>CHEMISTRY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Course Prefix</th>
<th>3. Course Number</th>
<th>4. Previous Course Prefix & Number</th>
<th>5a. Credits/CEUs</th>
<th>5b. Contact Hours (Lecture + Lab)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM</td>
<td>A106</td>
<td>N/A</td>
<td>3</td>
<td>(3+0)</td>
</tr>
</tbody>
</table>

6. Complete Course Title

General Chemistry II

Abbreviated Title for Transcript (30 character)

7. Type of Course

- [x] Academic
- [] Preparatory/Development
- [] Non-credit
- [] CEU
- [] Professional Development

8. Type of Action:

- [x] Change

9. Repeat Status No

<table>
<thead>
<tr>
<th># of Repeats</th>
<th>Max Credits</th>
</tr>
</thead>
</table>

10. Grading Basis

- [x] A-F
- [] P/NP
- [] NG

11. Implementation Date

From: Fall/2012
To: 1999

12. Cross Listed with

Cross-Listed Coordination Signature

13a. Impacted Courses or Programs:

List any programs or college requirements that require this course.

Please type into fields provided in table. If more than three entries, submit a separate table. A template is available at www.uaa.alaska.edu/governance.

<table>
<thead>
<tr>
<th>Impacted Program/Course</th>
<th>Catalog Page(s) Impacted</th>
<th>Date of Coordination</th>
<th>Chair/Coordinator Contacted</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. See attached table</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Initiator Name (typed): Colin McGill

Initiator Signed Initials: ___________________ Date: ___________________

13b. Coordination Email

Date: 03/05/2012

submitted to Faculty Listserv: (uaa-faculty@lists.uaa.alaska.edu)

13c. Coordination with Library Liaison

Date: 03/05/2012

14. General Education Requirement

Mark appropriate box:

- Oral Communication
- Written Communication
- Social Sciences
- Natural Sciences
- Integrative Capstone

15. Course Description (suggested length 20 to 50 words)

The second semester in the general chemistry sequence for science majors. Topics include kinetics, equilibrium chemistry, acid-base chemistry, oxidation-reduction reactions, electrochemical cell chemistry, thermodynamics, nuclear chemistry, and chemical analysis methods. Special Note: CHEM A106L is the laboratory component of this course and requires a separate registration.

16a. Course Prerequisite(s) (list prefix and number)

CHEM A105 with minimum grade of C.

16b. Test Score(s)

16c. Co-requisite(s) (concurrent enrollment required)

16d. Other Restriction(s)

- [] College
- [] Major
- [] Class
- [] Level

16e. Registration Restriction(s) (non-codable)

17. Mark if course has fees

18. Mark if course is a selected topic course

19. Justification for Action

Course content guide update.

Initiator (faculty only)

Initiator Signed Initials: ___________________ Date: ___________________

Approved

Disapproved

Dean/Director of School/College Date

Initiator (TYPE NAME)

18. Mark if course is a selected topic course

19. Justification for Action

Course content guide update.

Approved

Disapproved

Undergraduate/Graduate Academic Board Chairperson Date

Approved

Disapproved

Provost or Designee Date

Disapproved

Department Chairperson Date

Approved

Disapproved

Curriculum Committee Chairperson Date

Approved

Disapproved

Provost or Designee Date
CHEM A106 – General Chemistry II

<table>
<thead>
<tr>
<th>Impacted Program/Course</th>
<th>Catalog Page(s) Impacted</th>
<th>Date of Coordination</th>
<th>Chair/Coordinator Contacted</th>
</tr>
</thead>
<tbody>
<tr>
<td>GER, natural sciences, p. 84</td>
<td></td>
<td>3/05/2012</td>
<td></td>
</tr>
<tr>
<td>CAS requirement, B.S. degree, natural sciences, p. 87</td>
<td></td>
<td>3/05/2012</td>
<td></td>
</tr>
<tr>
<td>Biological Sciences (CPSB 101P, 786-4770)</td>
<td></td>
<td>3/26/2012</td>
<td>Fred Rainey</td>
</tr>
<tr>
<td>B.A. Biology, major requirement, p. 96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.S. Biology, major requirement, p. 96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry (CPSB 101Q, 786-1238)</td>
<td></td>
<td>3/26/2012</td>
<td>Eric Holmberg</td>
</tr>
<tr>
<td>B.S. Chemistry, major requirement, chemistry option, p. 99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.S. Chemistry, major requirement, biochemistry option, p. 99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry, minor requirement, p. 99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geological Sciences (CPSB 101, 786-4940)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.S. Geological Sciences, major requirement, p. 106</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Sciences (CPSB 101P, 786-4770)</td>
<td></td>
<td>3/26/2012</td>
<td>Fred Rainey</td>
</tr>
<tr>
<td>B.S. Natural Sciences, major requirement, Environmental Sciences Option, p. 120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.S. Natural Sciences, major requirement, Pre-Health Professions Option, p. 122</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
B.S. Natural Sciences, major requirement, General Sciences Option, p. 123

Dietetics and Nutrition (CUDY 126, 786-4728) 3/26/2012 Tim Doebler

B.S. Dietetics, support course, p. 202

B.S. Nutrition, Community Nutrition Emphasis, major requirement for RD status, p. 204

B.S. Nutrition, Nutrition Science Emphasis, support course, p. 204

Medical Laboratory Technology (AHS 169, 786-4930) 3/26/2012 Heidi Mannion

B.S. Medical Technology, support course, p. 216

Civil Engineering (ENGR 201, 786-1900) 3/26/2012 Ziata Lokteva

B.S. Civil Engineering, civil engineering requirements, p. 234

Engineering: Computer systems, Electrical, and Mechanical Engineering (ENGR 201, 786-1900) 3/26/2012 Janelle North

B.S. Engineering, major requirement, p. 237

B.S. Engineering, Mechanical Engineering specialization required course, p. 238

Minor, Engineering, prerequisite, p. 243
Biological Sciences (CPSB 101P, 786-4770)

- BIOL A116, prerequisite, p. 344
- BIOL A327, prerequisite, p. 345

Civil Engineering (ENGR 201, 786-1900)

- CE A441, prerequisite, p. 352

Chemistry Department (CPSB 101, 786-1238)

- CHEM A106, course listing, p. 356
- CHEM A106L, prerequisite, p. 356
- CHEM A212, prerequisite, p. 356
- CHEM A253, prerequisite, p. 356
- CHEM A321, prerequisite, p. 356
- CHEM A331, prerequisite, p. 357

Engineering Science (ENGR 201, 786-1900)

- ES A346, prerequisite, p. 394

Geological Sciences (CPSB 101R, 786-4940)

- 3/26/2012
- Fred Rainey

- 3/26/2012
- Ziata Lokteva

- 3/26/2012
- Eric Holmberg

- 3/26/2012
- Ziata Lokteva

- 3/26/2012
- LeeAnn Munk
GEOL A360, prerequisite, p. 409
GEOL A450, prerequisite, p. 409
GEOL A465, prerequisite, p. 410
GEOL A665, prerequisite, p. 410

Mechanical Engineering (ENGR 201, 786-1973) 3/26/2012 Janelle North

ME A334, prerequisite, p. 435
Course Content Guide for **CHEM A106**

University of Alaska Anchorage

College of Arts & Sciences

I. **Date of Initiation:** January 30, 2012

II. **Course Information:**

 A. **College:** College of Arts & Sciences

 B. **Course Subject:** CHEM

 C. **Course Number:** A106

 D. **Number of Credits:** 3

 E. **Contact Hours:** 3 + 0

 F. **Course Title:** General Chemistry II

 G. **Grading Basis:** A – F

 H. **Implementation Date:** Fall 2012

I. **Course Description:** The second semester in the general chemistry sequence for science majors. Topics include kinetics, equilibrium chemistry, acid-base chemistry, oxidation-reduction reactions, electrochemical cell chemistry, thermodynamics, nuclear chemistry, and chemical analysis methods. Special Note: CHEM A106L is the laboratory component of this course and requires a separate registration.

J. **Course Attributes:** UAA GER Natural Sciences Requirement.

K. **Prerequisites:** CHEM A105 with minimum grade of C.

L. **Test Scores:** N/A

M. **Co-requisites:** N/A

N. **Registration Restrictions:** N/A
O. **Course Fee:**
No

III. **Instructional Goals and Student Learning Outcomes:**

A. **Course Activities:**

Students will explore concepts and solve problems relevant to current topics in chemistry. Activities provide students with chemical models and/or chemical data followed by questions to guide them through the learning cycle, building conceptual understanding in a process emulating the scientific method. The instructor will assist in the learning process through a variety of methods that may include lectures, facilitation of class discussions, and demonstrations.

B. **Instructional Goals:**

This course is designed to fulfill the needs of general education requirements and to provide a foundation in general chemistry specifically for science and engineering majors. It involves a significantly more rigorous approach than CHEM A103/A104, and does not concentrate specifically on health related problems nor emphasize Organic or Biochemistry. Concepts in various types of chemical interactions and dynamics, development of chemical analysis methods, skills in model exploration, and hypotheses building and testing using problem solving skills are emphasized.

The instructor will:

1. Present chemical models of atomic and molecular structure, bonding and chemical reactions for investigation and develop problem solving and observational skills on problems relevant to current issues and topics in chemistry.
2. Present convergent and divergent questions to initiate discussion on the relevance of current chemical models to observe and understand natural phenomena, help students differentiate, link and integrate ideas and develop their own concepts, to articulate their thinking and explain models and solutions.
3. Provide multiple historical and culturally relevant contexts for applying concepts and quantitative skills.

C. **Student Learning Outcomes:**

The student will:

1. Recognize and interpret chemical models of atomic and molecular structure, bonding and chemical reactions.
2. Apply observation, investigative and problem solving skills to problems in chemistry.
3. Demonstrate skills in science methodology such as exploring and selecting appropriate models.
4. Solve problems on current chemistry topics.
5. Create, communicate, defend and verify their solutions to problems across multiple contexts.

D. **Assessment Measures:**

Various assessment tools can be used at the instructor’s discretion, including but not limited to quizzes, weekly homework and exams.

IV. **Course Level Justification:**

This course introduces students to general chemistry concepts in molecular interactions, reaction dynamics and methods of analysis. Students learn basic skills in model exploration and verification for comprehension and retention of concepts and become acquainted with chemistry as a science discipline.

V. **Topical Course Outline:**

1. Chemical Kinetics
2. Chemical Equilibrium
3. Acids and Bases
4. Acid-Base Equilibria
5. Solubility and Complex Ion Equilibria
6. Spontaneity, Entropy, and Free Energy
7. Electrochemistry
8. The Nucleus: A Chemist’s View
9. Transition Metals and Coordination Chemistry

VI. **Suggested Texts:**

VII. **Bibliography:**

Course Action Request

University of Alaska Anchorage

Proposal to Initiate, Add, Change, or Delete a Course

<table>
<thead>
<tr>
<th>1a. School or College</th>
<th>AS CAS</th>
<th>1b. Division</th>
<th>AMSC Division of Math Science</th>
<th>1c. Department</th>
<th>CHEMISTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Course Prefix</td>
<td>CHEM</td>
<td>3. Course Number</td>
<td>A106L</td>
<td>4. Previous Course Prefix & Number</td>
<td>N/A</td>
</tr>
<tr>
<td>5a. Credits/CEUs</td>
<td>1</td>
<td>5b. Contact Hours</td>
<td>(Lecture + Lab)</td>
<td>(0+3)</td>
<td></td>
</tr>
</tbody>
</table>

Complete Course Title
General Chemistry II Laboratory
General Chem II Lab

Abbreviated Title for Transcript (30 character)

Type of Course
- [] Academic
- [] Preparatory/Development
- [] Non-credit
- [] CEU
- [] Professional Development

Type of Action:
- [] Add
- [] Change
- [] Delete

Contact Hours
- (Lecture + Lab)
- (0+3)

Course Description
The second semester of this introductory chemistry laboratory course sequence. Experiments are designed to reinforce concepts students have been exposed to regarding the basics of laboratory equipment, data collection, data analysis, and reporting. This course illustrates, augments and applies concepts covered in CHEM A106. Special Note: Students who do not meet the prerequisites for this course may be administratively dropped at the discretion of the faculty. Attendance is mandatory for all chemistry laboratory courses the first week of class. Unless prior arrangements are made with the instructor, any student who does not attend the first scheduled meeting for this lab may be administratively dropped and a student on a waiting list will be added in their place. Any fees resulting from either of these drop procedures or any late registration procedure will be the responsibility of the student.

Course Prerequisite(s)
- CHEM A105L with minimum grade of C and (CHEM A106 with minimum grade of C or concurrent enrollment)

Test Score(s)

Co-requisite(s)
(concurrent enrollment required)

Other Restriction(s)

Registration Restriction(s)
(non-codable)

Implementation Date
From: Fall/2012 To: /9999

Type of Action
- [] Cross Listed with
 - [] Stacked with

Coordination Email
Date: 03/05/2012

General Education Requirement
- [] Oral Communication
- [] Written Communication
- [] Social Sciences
- [] Quantitative Skills
- [] Natural Sciences
- [] Integrative Capstone

Course Description (suggested length 20 to 50 words)
The second semester of this introductory chemistry laboratory course sequence. Experiments are designed to reinforce concepts students have been exposed to regarding the basics of laboratory equipment, data collection, data analysis, and reporting. This course illustrates, augments and applies concepts covered in CHEM A106. Special Note: Students who do not meet the prerequisites for this course may be administratively dropped at the discretion of the faculty. Attendance is mandatory for all chemistry laboratory courses the first week of class. Unless prior arrangements are made with the instructor, any student who does not attend the first scheduled meeting for this lab may be administratively dropped and a student on a waiting list will be added in their place. Any fees resulting from either of these drop procedures or any late registration procedure will be the responsibility of the student.

Course Prerequisite(s) (list prefix and number)
CHEM A105L with minimum grade of C and (CHEM A106 with minimum grade of C or concurrent enrollment)

Co-requisite(s) (concurrent enrollment required)

Registration Restriction(s) (non-codable)

Justification for Action
Clarification of prerequisites. Course content guide update.
<table>
<thead>
<tr>
<th>Initiator (faculty only)</th>
<th>Date</th>
<th>Approved</th>
<th>Disapproved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiator (TYPE NAME)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disapproved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disapproved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department Chairperson</td>
<td>Date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disapproved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disapproved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curriculum Committee Chairperson</td>
<td>Date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disapproved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disapproved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dean/Director of School/College</td>
<td>Date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undergraduate/Graduate Academic</td>
<td>Date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Board Chairperson</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disapproved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provost or Designee</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disapproved</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHEM A106L – General Chemistry II Laboratory

<table>
<thead>
<tr>
<th>Impacted Program/Course</th>
<th>Catalog Page(s) Impacted</th>
<th>Date of Coordination</th>
<th>Chair/Coordinator Contacted</th>
</tr>
</thead>
<tbody>
<tr>
<td>GER, natural sciences, p. 84</td>
<td></td>
<td>3/05/2012</td>
<td></td>
</tr>
<tr>
<td>CAS requirement, B.S. degree, natural sciences, p. 87</td>
<td></td>
<td>3/05/2012</td>
<td></td>
</tr>
</tbody>
</table>

Biological Sciences (CPSB 101P, 786-4770)

- B.A. Biology, major requirement, p. 96
- B.S. Biology, major requirement, p. 96

3/26/2012 Fred Rainey

Chemistry (CPSB 101Q, 786-1238)

- B.S. Chemistry, major requirement, chemistry option, p. 99
- B.S. Chemistry, major requirement, biochemistry option, p. 99
- Chemistry, minor requirement, p. 99

3/26/2012 Eric Holmberg

Geological Sciences (CPSB 101, 786-4940)

- B.S. Geological Sciences, major requirement, p. 106

3/26/2012 LeeAnn Munk

Natural Sciences (CPSB 101P, 786-4770)

- B.S. Natural Sciences, major requirement, Environmental Sciences Option, p. 120

3/26/2012 Fred Rainey
B.S. Natural Sciences, major requirement, Pre-Health Professions Option, p. 122

B.S. Natural Sciences, major requirement, General Sciences Option, p. 123

Dietetics and Nutrition (CUDY 126, 786-4728) 3/26/2012 Tim Doebler

B.S. Dietetics, support course, p. 202

B.S. Nutrition, Community Nutrition Emphasis, major requirement for RD status, p. 204

B.S. Nutrition, Nutrition Science Emphasis, support course, p. 204

Medical Laboratory Technology (AHS 169, 786-4930) 3/26/2012 Heidi Mannion

B.S. Medical Technology, support course, p. 216

Civil Engineering (ENGR 201, 786-1900) 3/26/2012 Ziata Lokteva

B.S. Civil Engineering, civil engineering requirements, p. 234

Engineering: Computer systems, Electrical, and Mechanical Engineering (ENGR 201, 786-1900) 3/26/2012 janelle North

B.S. Engineering, Mechanical Engineering specialization required course, p. 238

Biological Sciences (CPSB 101P, 786-4770) 3/26/2012 Fred Rainey

BIOL A116, prerequisite, p. 344
BIOL A327, prerequisite, p. 345

Civil Engineering (ENGR 201, 786-1900) 3/26/2012 Ziata Lokteva
CE A441, prerequisite, p. 352

Chemistry Department (CPSB 101, 786-1238) 3/26/2012 Eric Holmberg
CHEM A106L, course listing, p. 356
CHEM A212, prerequisite, p. 356
CHEM A321, prerequisite, p. 356 (removed as a prerequisite if approved)
CHEM A331, prerequisite, p. 357
Course Content Guide for **CHEM A106L**
University of Alaska Anchorage
College of Arts & Sciences

I. **Date of Initiation:** October 20, 2011

II. **Course Information**

 A. **College:** College of Arts & Sciences

 B. **Course Subject:** CHEM

 C. **Course Number:** A106L

 D. **Number of Credits:** 1

 E. **Contact Hours:** 0 + 3

 F. **Course Title:** General Chemistry II Laboratory

 G. **Grading Basis:** A-F

 H. **Implementation Date:** Fall 2012

I. **Course Description:** The second semester of this introductory chemistry laboratory course sequence. Experiments are designed to reinforce concepts students have been exposed to regarding the basics of laboratory equipment, data collection, data analysis, and reporting. This course illustrates, augments and applies concepts covered in CHEM A106. Special Note: Students who do not meet the prerequisites for this course may be administratively dropped at the discretion of the faculty. Attendance is mandatory for all chemistry laboratory courses the first week of class. Unless prior arrangements are made with the instructor, any student who does not attend the first scheduled meeting for this lab may be administratively dropped and a student on a waiting list will be added in their place. Any fees resulting from either of these drop procedures or any late registration procedure will be the responsibility of the student.
J. **Course Attributes:** GER Natural Sciences Lab only

K. **Prerequisites:** CHEM 105L with minimum grade of C and (CHEM A106 with minimum grade of C or concurrent enrollment)

L. **Test Scores:** N/A

M. **Corequisites:** N/A

N. **Registration Restrictions:** N/A

O. **Course Fee:** Yes

III. **Instructional Goals and Student Learning Outcomes**

A. **Course Activities:**

Students will explore concepts and solve problems relevant to experimental and theoretical chemistry. Exercises and experiments provide students with chemical models and/or chemical data followed by questions to guide them through the learning cycle, building conceptual understanding in a process emulating the scientific method. The instructor will assist the learning process through a variety of methods that may include: lecture, group discussions, demonstration and/or discussions with individuals, groups or the entire class.

B. **Instructional Goals:**

Instructional Goals:

This course is designed to fulfill the needs of general education requirements and to provide a foundation in general chemistry and the general chemistry laboratory. It is intended to be an introduction to the chemistry laboratory. Safety in the laboratory environment, the proper use of glassware and equipment, and an integration of chemistry concepts, mathematics, technology, problem solving and kinesthesis are emphasized.

The instructor will:

1. Provide students with a safe, supervised environment.
2. Supply students with standard operating procedures for each experiment and examples of experimental setups to instruct proper lab technique.
3. Present models of the periodic table, atomic and molecular structure, chemical bonding and reactions for development of observational skills and conceptual foundations in chemistry.
4. Present questions to initiate discussion, help students integrate chemistry concepts, and explain models and solutions.

C. Student Learning Outcomes:

The student will:

1. Safely and correctly repeat previously covered skills in the chemistry laboratory.
2. Conduct laboratory work systematically by following procedures as outlined by the curriculum.
3. Recognize and interpret chemical models of the periodic table, atomic and molecular structure, bonding and chemical reactions.
4. Demonstrate science methodology with emphasis on exploring and verifying measurements and chemical.
5. Demonstrate effective communication skills for discussing, applying and verifying chemistry concepts.

D. Assessment Measures:

Various assessment tools can be used, including, but not limited to quizzes, preparatory questions sets, lab reports, homework, and comprehensive exams.

IV. Course Level Justification

This course introduces students to chemistry laboratory concepts. Students develop basic laboratory skills through model exploration and verification for comprehension and retention of concepts and become acquainted with chemistry as a laboratory science discipline.

V. Topic Course Outline

1. Laboratory Safety and Orientation
2. Mathematics and Computers in Chemistry
3. Chemical Equilibrium and the Equilibrium Constant
4. Determination of the Empirical Formula of a Coordination Complex using Job’s Method
5. Determination of a K_{sp} Using Spectrophotometry
6. Analysis of Vinegar by Titration
7. Determination of Buffer Capacity
8. Spectrophotometric Determination of the pK_a of Bromothymol Blue
9. Determination of Oxalate by Titration
10. Dependence of Cell Potential on Concentration: The Nernst Equation
11. Simultaneous Spectrophotometric Quantitation
12. Chemical Kinetics: Measuring Reaction Rates

VI. Suggested Texts

VII. Bibliography

Course Action Request
University of Alaska Anchorage
Proposal to Initiate, Add, Change, or Delete a Course

<table>
<thead>
<tr>
<th>1a. School or College</th>
<th>1b. Division</th>
<th>1c. Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH College of Health</td>
<td>AJUS Division of Justice</td>
<td>Justice Center</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Course Prefix</th>
<th>3. Course Number</th>
<th>4. Previous Course Prefix & Number</th>
<th>5a. Credits/CEUs</th>
<th>5b. Contact Hours (Lecture + Lab)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEGL</td>
<td>A101</td>
<td>PARL A101</td>
<td>3</td>
<td>(3+0)</td>
</tr>
</tbody>
</table>

6. Complete Course Title
Introduction to Law

Abbreviated Title for Transcript (30 character)

7. Type of Course
☐ Academic
☐ Preparatory/Development
☐ Non-credit
☐ CEU
☐ Professional Development

8. Type of Action:
☐ Add
☐ Change
☐ Delete

If a change, mark appropriate boxes:

- ☒ Prefix
- ☐ Course Number
- ☐ Credits
- ☐ Contact Hours
- ☐ Grading Basis
- ☐ Repeat Status
- ☐ Title
- ☐ Cross-Listed/Stacked
- ☐ Course Description
- ☐ Course Prerequisites
- ☐ Co-requisites
- ☐ Text Score Prerequisites
- ☐ Registration Restrictions
- ☐ Other Restrictions
- ☐ College
- ☐ Major
- ☐ Level
- ☐ Other Update CCG (please specify)

9. Repeat Status No
of Repeats
Max Credits

<table>
<thead>
<tr>
<th>10. Grading Basis</th>
<th>11. Implementation Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒ A-F</td>
<td>☐ P/NP</td>
</tr>
<tr>
<td>Semester/year</td>
<td>From: Fall/2012 To: /9999</td>
</tr>
</tbody>
</table>

| 12. Cross Listed with | 13a. Impacted Courses or Programs:
List any programs or college requirements that require this course.
Please type into fields provided in table. If more than three entries, submit a separate table.
A template is available at www.uaa.alaska.edu/governance.

<table>
<thead>
<tr>
<th>Impacted Program/Course</th>
<th>Catalog Page(s) Impacted</th>
<th>Date of Coordination</th>
<th>Chair/Coordinator Contacted</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. see separate table</td>
<td>2.</td>
<td>3.</td>
<td></td>
</tr>
</tbody>
</table>

Initiator Name (typed): Deborah Periman
Initiator Signed Initials: __________
Date: __________

Initiator (TYPE NAME): Deborah Periman

13b. Coordination Email: Date: 1/31/2012
submitted to Faculty Listserv: uaa-faculty@lists.uaa.alaska.edu

13c. Coordination with Library Liaison: Date: 1/31/2012

14. General Education Requirement
Mark appropriate box:
☐ Oral Communication
☐ Written Communication
☐ Quantitative Skills
☐ Humanities
☐ Fine Arts
☐ Social Sciences
☐ Natural Sciences
☐ Integrative Capstone

15. Course Description
(suggested length 20 to 50 words)
Introduces legal processes in a democratic society. Emphasis on legal terminology, federal and state court systems and judicial decision making. Introduction to basic concepts of contracts, torts, criminal law, family law, and administrative law. Includes skills for conducting basic legal analysis.

16a. Course Prerequisite(s) (list prefix and number):
N/A

16b. Test Score(s):
N/A

16c. Co-requisite(s) (concurrent enrollment required):
N/A

16d. Other Restriction(s):
☐ College
☐ Major
☐ Class
☐ Level

16e. Registration Restriction(s) (non-codable):
N/A

17. Mark if course has fees:
☐ Yes
☐ No

18. Mark if course is a selected topic course:
☐ Yes
☐ No

19. Justification for Action
Change prefix to correspond to new program description. Update texts and bibliography.

Initiator (faculty only):
Date: __________

Approved
Disapproved

Dean/Director of School/College:
Date: __________

Approved
Disapproved

Department Chairperson:
Date: __________

Approved
Disapproved

Board Chairperson:
Date: __________

Approved
Disapproved

Provost or Designee:
Date: __________

77
<table>
<thead>
<tr>
<th>Impacted Program or Course</th>
<th>Type of Impact (course or program)</th>
<th>Course Impacts examples: prerequisite, corequisite, recommended</th>
<th>Program Impacts examples: requirement, selective, program credit total</th>
<th>Catalog Page</th>
<th>Type/Date of Notification</th>
<th>Chair/Coordinator Contacted (not listerve)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post-Baccalaureate Certificate, Paralegal Studies</td>
<td>requirement</td>
<td></td>
<td></td>
<td>158-159</td>
<td>1/31/12</td>
<td>Deborah Periman</td>
</tr>
<tr>
<td>Certificate, Legal Nurse Consultant Paralegal</td>
<td>requirement</td>
<td></td>
<td></td>
<td>158-159</td>
<td>1/31/12</td>
<td>Deborah Periman</td>
</tr>
<tr>
<td>Minor, Legal Studies</td>
<td>requirement</td>
<td></td>
<td></td>
<td>158-159</td>
<td>1/31/12</td>
<td>Deborah Periman</td>
</tr>
<tr>
<td>Bachelor of Arts, Legal Studies</td>
<td>requirement</td>
<td></td>
<td></td>
<td>158-159</td>
<td>1/31/12</td>
<td>Deborah Periman</td>
</tr>
<tr>
<td>Associate of Applied Science, Paralegal Studies</td>
<td>requirement</td>
<td></td>
<td></td>
<td>158-159</td>
<td>1/31/12</td>
<td>Deborah Periman</td>
</tr>
</tbody>
</table>
I. Date of Initiation: February 2012

II. Curriculum Action Request
A. School: College of Health
B. Course Subject: LEGL
C. Course Number: A101
D. Number of Credits: 3
E. Contact Hours: 3+0
F. Course Program: AAS, Paralegal Studies; Post-Baccalaureate Certificate, Paralegal Studies; BA Legal Studies; Minor, Legal Studies; Certificate, Legal Nurse Consultant Paralegal
G. Course Title: Introduction to Law
H. Grading Basis: A-F
I. Implementation Date: Fall/2012
J. Cross-listed/Stacked: N/A
K. Course Description: Introduces legal processes in a democratic society. Emphasis on legal terminology, federal and state court systems and judicial decision making. Introduction to basic concepts of contracts, torts, criminal law, family law, and administrative law. Includes skills for conducting basic legal analysis.
L. Course Prerequisites: N/A
M. Course Co-requisites: N/A
N. Other Restrictions: N/A
O. Registration Restrictions: N/A
P. Course Fees: No
Q. Course Attributes: General Education Requirement, Social Sciences

III. Instructional Goals and Student Learning Outcomes
A. The instructor will:
 1. Promote students’ understanding of law as a means of regulating conduct and defining social norms in a democratic society.
 2. Develop students’ awareness of structure of the federal and state court systems, and the role courts play in resolving disputes and maintaining social order.
 3. Assist students in differentiating between civil and criminal laws and remedies.
 4. Provide students with fundamental concepts pertaining to contract, tort, administrative, family, and criminal law.
5. Enhance students’ ability to critically evaluate legal issues presented in current events, mainstream, and alternative media.

B. Upon completion of this course, the student will be able to:
Note: All student outcomes are related to GER Outcome 5: “Investigate the complexity of human institutions and behavior to better understand interpersonal, group, political, economic, and/or cultural dynamics.”

<table>
<thead>
<tr>
<th>Outcomes and Assessment Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcomes</td>
</tr>
<tr>
<td>1. Comprehend the way in which law regulates conduct and defines social norms in a democratic society.</td>
</tr>
<tr>
<td>2. Identify the functions of the federal and state court systems and the role courts play in resolving disputes and maintaining social order.</td>
</tr>
<tr>
<td>3. Describe the distinction between civil and criminal laws and remedies.</td>
</tr>
<tr>
<td>4. Recognize vocabulary and concepts related to fundamental principles of contract, tort, administrative, family, and criminal law.</td>
</tr>
<tr>
<td>5. Relate current events presented in mainstream and alternative media to principles of law presented in the course.</td>
</tr>
</tbody>
</table>

IV. Course Level Justification
The course provides students with foundational knowledge regarding state and federal legal systems. It emphasizes legal terminology, legal process, and core concepts in a broad array of substantive law areas. The course introduces students to critical thinking skills necessary to conduct basic legal analysis and to write clearly about legal issues. The course material is appropriate for students who have had no prior instruction in legal theory.

V. Topical Course Outline
1. Primary Sources Of Law
 1.1 Constitutions
 1.1.1 Federal
 1.1.2 State
 1.2 Statutes
 1.2.1 Constitutional Basis
 1.2.2 Legislative Process
 1.2.2.1 Federal
 1.2.2.2 State
 1.2.3 Separation Of Powers / Checks And Balances
1.2.4 Methods Of Challenge
1.2.5 Statutory Interpretation

1.3 Regulations
1.3.1 Constitutional Basis
1.3.2 Administrative Agencies
1.3.3 Methods Of Adoption
1.3.4 Methods Of Challenge

1.4 Judicial Decisions
1.4.1 Judicial Review
1.4.2 Applying Law To Facts
1.4.3 Role Of Judiciary
1.4.4 Due Process

1.5 Federalism
1.5.1 10th Amendment
1.5.2 Pre-Emption Doctrine

2. Judicial Systems
2.1 Federal Courts
 2.1.1 Structure Of Federal Court System
 2.1.2 The Independent Judiciary
 2.1.2.1 Article III Limitations
 2.1.2.2 Politics And Federal Courts

2.2 State Courts
 2.2.1 Structure Of The Alaska Court System
 2.2.1.1 Original, General, And Limited Jurisdiction
 2.2.1.2 Appellate Jurisdiction
 2.2.1.2.1 Appeals Of Right
 2.2.1.2.2 Discretionary Appeals
 2.2.2 Judicial Selection And Retention
 2.2.2.1 Alaska Judicial Council
 2.2.2.2 Retention By Ballot

3.1 Case Briefing And Analysis
3.2 Precedents
 3.2.1 Stare Decisis
 3.2.2 Reported Vs. Unreported Decisions
 3.2.3 Binding And Persuasive Authorities

3.3 The Role Of Constitutional Theory In Decisions
 3.3.1 Originalism
 3.3.2 Living Law Interpretations
 3.3.3 Critical Theory Approaches

3.4 Limitations On Judicial Relief
 3.4.1 Standing
 3.4.2 Mootness
 3.4.3 Advisory Opinions
 3.4.4 Political Questions
4. Civil Procedure
 4.1 Procedural Due Process
 4.2 Pleadings
 4.3 Discovery
 4.4 Motions Practice
 4.4.1 Issues Of Fact
 4.4.2 Issues Of Law
 4.5 Trial
 4.5.1 Order Of Proceedings
 4.5.2 Evidence
 4.5.2.1 The Role Of Experts
 4.5.2.2 Testimonial Evidence
 4.5.2.3 Documentary Evidence
 4.5.2.4 Demonstrable Evidence
 4.5.3 Fact Finder
 4.5.4 Remedies
 4.5.4.1 Legal Remedies
 4.5.4.2 Equitable Remedies
 4.5.5 Post-Judgment Motions
 4.5.6 Appeal Rights
5. Substantive Law Topics
 5.1 Contracts
 5.1.1 Formation
 5.1.2 Differentiating Forms Of Contracts
 5.1.2.1 Unilateral And Bilateral
 5.1.2.2 Executory And Non-Executory
 5.1.2.3 Illusory Contracts
 5.1.3 Breach
 5.1.3.1 Performance Excused
 5.1.3.2 Justified Non-Performance
 5.1.4 Remedies
 5.1.4.1 Damages: Measuring Expectancy
 5.1.4.2 Specific Performance
 5.2 Torts
 5.2.1 Intentional Torts
 5.2.2 Negligence
 5.2.2.1 Foreseeability
 5.2.2.2 Proximate Cause
 5.2.2.3 Duties
 5.2.3 Strict Liability
 5.3 Family Law
 5.3.1 Marriage
 5.3.1.1 Eligibility
 5.3.1.2 Requirements
 5.3.2 Child Custody
 5.3.2.1 “Best Interests Of The Child”
5.3.2.2 Presumptions
5.3.2.3 Factors
5.3.3 Child Support
5.3.4 Divorce And Dissolution
 5.3.4.1 Equitable Distribution
 5.3.4.2 Differentiation
5.4 Administrative Law
 5.4.1 Administrative Procedures Acts
 5.4.2 Delegation Of Authority
 5.4.3 Ultra Vires
 5.4.4 Administrative Rule Making
 5.4.5 Administrative Adjudications
 5.4.6 Judicial Review
5.5 Criminal Law And Procedure
 5.5.1 Arrest
 5.5.2 Grand Jury
 5.5.3 Custodial Interrogations
 5.5.4 Constitutional Rights
 5.5.5 Search And Seizure
 5.5.6 Exclusionary Rule
 5.5.7 Criminal Trials

VI. Suggested Texts

VII. Bibliography

¹ Classic work.

GER Assessment Recommendations

In response to a request from the Office of Academic Affairs to the Faculty Senate for a suggested structure and funding for General Education Assessment:

A. The General Education Review Committee (GERC) recommends formation of a one-year General Education Requirements Assessment Task Force (GER Task Force). This task force will be funded through the Office of Academic Affairs. The composition should be of the same nature as the GERC (refer to Faculty Senate Bylaws), but also include the Chair of the Associate of Arts Assessment Committee, a member of the Faculty Senate Academic Assessment Committee, and the Director of General Education (see below). Members of GERC may also serve on the GER Task Force as GER discipline area representatives or unit representatives.

The task force’s charge is to work with faculty involved in general education to develop an assessment plan for General Education Requirements at UAA. The assessment plan should include use of a Director of General Education as the primary facilitator of general education assessment. The task force should consider close alignment with the Associate of Arts degree assessment plan as an option to conserve university resources.

B. The General Education Review Committee recommends formation of a “Center for General Education” that would report to a Vice-Provost in the Office of Academic Affairs. The Center for General Education would include a position for a Director of General Education and any necessary support staff. The director position should be established and filled prior to formation of the GER Task Force, and should receive at least a half-time course release on his/her faculty workload. The director should become an ex-officio member of the GERC and should be a member of the GER Task Force. Depending on the plan adopted by the task force, the role of the Director of General Education could be as follows:

1. Serve on the GER Task Force as primary investigator/researcher.
2. Lead the development of a General Education Assessment Plan using faculty collaboration.
3. Implement the assessment plan developed by the GER Task Force.
4. Collect, analyze, and interpret data, identifying deficient areas. This task may be delegated as needed to the Office of Institutional Research.
5. Consult with faculty in each category to determine recommendations for program improvement.
7. Present report to GERC for approval or further refinement and subsequent approval.
8. Facilitate implementation of corrective actions recommended in the assessment report.
9. Work with faculty governance (GERC) to refine and update assessment plan as needed.
10. Facilitate regular faculty review of GER Classifications including the nine GER outcomes and the outcomes of each of the eight classifications.
11. Ensure continuity between the nine General Education outcomes, the outcomes for each of the eight classifications, the seven Associate of Arts program outcomes, and the five Institutional Learning Outcomes. Representative faculty in each classification must approve outcomes for their respective classification.
GER Assessment Recommendations

Qualifications for the position of Director of General Education should include:
 Required:
 Qualified for appointment as a member of the UAA Faculty
 Preferred:
 Substantial/significant experience in General Education
 Substantial/significant experience in Institutional Accreditation
 Substantial/significant experience in Curriculum Development
 Substantial/significant experience in Assessment