I. Call to Order
Roll

() Erik Hirschman Mat-Su/UAB Social Sciences
() Mari Ippolito CAS/UAB
() Patricia Fagan CAS Humanities
() Robert Capuzzo COE
() Jack Pauli CBPP
() Jeane Breinig CAS Written Communication
() Len Smiley CAS Quantitative Skills
() Suzanne Forster CAS/UAB
() Robin Wahto CTC/UAB
() Walter Olivares CAS Fine Arts
() Bart Quimby OAA/UAB
() Catherine Sullivan CHSW/UAB
() Doug Parry/ CAS Oral Communication
 Shawnalee Whitney
() Jeff Miller SOE
() Karl Wing USUAA
() Hilary Davies UAB Chair

II. Approval of Agenda (pg. 1)

III. Approval of Summary (pg. 2)

IV. Report from Associate Vice Provost Bart Quimby

V. Chair’s Report

VI. Course Action Requests

Chg ASTR A103 Solar System Astronomy (3 cr) (3+0) (pg. 3-5)

Chg ASTR A103L Solar System Astronomy Lab (3 cr) (3+0) (pg. 6-8)

Chg ASTR A104 Stars, Galaxies and Cosmology (3 cr) (3+0) (pg. 9-11)

Chg ASTR A104L Stars, Galaxies and Cosmology Lab (3 cr) (3+0) (pg. 12-14)

Chg HS A491 Health Issues in Alaska (3 cr) (3+0) (pg. 15-22)

Chg DNCE A370 Interdisciplinary Dance Studies: Issues and Methods (3 cr) (3+0) (pg. 23-29)

VII. Old Business

VIII. New Business

IX. Informational Items and Adjournment
April 10, 2009
Room Change: RH 207A
1:00 p.m. – 1:30 p.m.

I. Call to Order
Roll
(x) Erik Hirschman Mat-Su/UAB Social Sciences
(x) Mari Ippolito CAS/UAB
(x) Patricia Fagan CAS Humanities
(x) Robert Capuozzo COE
(x) Jack Pauli CBPP
(x) Jeane Breinig CAS Written Communication
(x) Len Smiley CAS Quantitative Skills
(x) Suzanne Forster CAS/UAB
(x) Robin Wahto CTC/UAB
() Walter Olivares CAS Fine Arts
(x) Bart Quimby OAA/UAB
(x) Catherine Sullivan CHSW/UAB
(x) Doug Parry/ Shawnalee Whitney CAS Oral Communication
(x) Jeff Miller SOE
() Karl Wing USUAA
(x) Hilary Davies UAB Chair

II. Approval of Agenda (pg. 1)
Approved

III. Approval of Summary (pg. 2)
Approved

IV. Report from Associate Vice Provost Bart Quimby

V. Chair’s Report
Memo to Provost regarding SOC and JUST was drafted by UAB and delivered to the Provost

VI. Course Action Requests
Add BIOL A489 Population Genetics and Evolutionary Processes (3 cr) (3+0) (pg. 3-8)
Approved

VII. Old Business

VIII. New Business

IX. Informational Items and Adjournment
Curriculum Action Request
University of Alaska Anchorage
Proposal to Initiate, Add, Change, or Delete a Course or Program of Study

1a. School or College
AS CAS

1b. Division
AMSC Division of Math Science

1c. Department
Physics and Astronomy

2. Course Prefix
ASTR

3. Course Number
A103

4. Previous Course Prefix & Number

5a. Credits/CEU
3

5b. Contact Hours (Lecture + Lab)
(3+0)

6. Complete Course/Program Title
Solar System Astronomy

7. Type of Course
☐ Academic
☐ Non-credit
☐ CEU
☐ Professional Development

8. Type of Action
☒ Change
☐ Add
☐ Delete

☐ Prefix
☐ Credits
☒ Title
☐ Grading Basis
☐ Course Description
☐ Test Score Prerequisites
☐ Other Restrictions
☐ Class
☐ Level
☐ College
☐ Major
☐ Other CCG

9. Repeat Status No
☐ # of Repeats
☐ Max Credits

10. Grading Basis
☒ A-F
☐ P/NP
☐ NG

11. Implementation Date
From: Sp/2010
To: /9999

12. ☐ Cross Listed with
☐ Stacked with
☐ Cross-Listed Coordination Signature

13. List any programs or college requirements that require this course

14. Coordinate with Affected Units:
Emailed faculty list-serve
Department, School, or College

15. ☒ General Education Requirement
☐ Oral Communication
☐ Written Communication
☐ Quantitative Skills
☐ Humanities
☐ Fine Arts
☐ Social Sciences
☒ Natural Sciences
☐ Integrative Capstone

16. Course Description
Introduction to solar system astronomy; emphasis on most recent results from space research. History of astronomy, instruments, planetary motion, physical properties of planets, satellites, comets, and solar system evolution.

17a. Course Prerequisite(s) (list prefix and number)
NA

17b. Test Score(s)
NA

17c. Co-requisite(s) (concurrent enrollment required)
ASTR A103L

17d. Other Restriction(s)

17e. Registration Restriction(s) (non-codable)
High school algebra and trigonometry or equivalent

18. ☒ Mark if course has fees

19. Justification for Action
The course title needs to more clearly describe the material covered. Also, this action re-links lecture and lab. Our attempt to disconnect the two did not succeed in that less than one-third of lecture students have participated in the lab. We feel the lab experience is central to this course, so we need to re-establish the requirement that all students complete the lab component.
I. Date of Initiation
February 27, 2009

II. Course Information
A. College: CAS
 Department: Physics & Astronomy
B. Course Subject: ASTR
C. Course Number: A103
D. Number of Credits/CEU: 3.0
E. Number of Contact Hours: 3+0
F. Course Title: Solar System Astronomy
G. Grading Basis: A-F
H. Course Description:
 Introduction to solar system astronomy; emphasis on most recent results from space research. History of astronomy, instruments, planetary motion, physical properties of planets, satellites, comets, and solar system evolution.

I. Co-Requisite:
 ASTR A103L

J. Registration Restrictions:
 High school algebra and trigonometry or equivalent

K. Fees
 Yes

L. Implementation Date:
 Spring 2010

III. Course Activities
This course will typically be structured to use a combination of lectures, planetarium demonstrations, peer-based instruction, and research-based activities.

IV. Evaluation
The grading scale is A-F. The student will be evaluated on a weekly basis through quizzes, homework assignments, one or two midterms, and a final exam.

V. Course Level Justification
This course is a lower division course usually taken by freshmen and sophomores.

VI. Outline
1. Early history of Astronomy, from the Greeks to Copernicus and Brahe
2. Origin of modern Astronomy, from Kepler and Galileo to Newton
3. Sky and calendar
4. Light and atoms
5. Telescopes
6. Structure and origin of the Solar System
7. Our Earth and Moon
8. The terrestrial planets: Mercury, Venus, Mars
9. The Jovian planets: Jupiter, Saturn, Uranus, Neptune
10. Rings and the Jovian satellites
11. Pluto and the Kuiper Belt
12. Minor planets and meteorites
13. Comets and the Oort Cloud
14. Extrasolar planets

VII. Instructional Goals and Student Outcomes
A. Instructional Goals.
1. To provide the student with an in-depth understanding of the fundamental concepts of classical astronomy, with emphasis on techniques and problems in solar system astronomy.
2. To provide the student with information on historical astronomy, gravitation, light, optical instruments, the theories of the origin and development of the Solar System, and an in-depth survey of each major planet in the solar system with a strong emphasis on recent space astronomy results.
3. To apply these concepts and perspectives to an analysis of case studies from modern astronomy research.

B. Student Outcomes. The student will demonstrate the ability to:

Student Outcomes
Define and explain the basic terms and concepts used in analysis of problems in solar system astronomy.

Apply the scientific method and use the procedures and techniques of basic solar system astronomy in solving typical problems in the field.

Identify ways in which astronomy has advanced the understanding of important natural processes.

Describe and discuss advances in solar system astronomy, and how these advances have impacted thought and technology.

Assessment Procedures
Objective exams, homework, in-class tutorials, and optional student presentations.

Objective exams, homework, in-class tutorials, and optional student presentations.

Objective exams, homework, in-class tutorials, and optional student presentations.

Objective exams, homework, in-class tutorials, and optional student presentations.

VIII. Suggested Texts (at option of instructor)

IX. Bibliography and Resources
Curriculum Action Request
University of Alaska Anchorage
Proposal to Initiate, Add, Change, or Delete a Course or Program of Study

<table>
<thead>
<tr>
<th>1a. School or College</th>
<th>1b. Division</th>
<th>1c. Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS CAS</td>
<td>AMSC Division of Math Science</td>
<td>Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Course Prefix</th>
<th>3. Course Number</th>
<th>4. Previous Course Prefix & Number</th>
<th>5a. Credits/CEU</th>
<th>5b. Contact Hours (Lecture + Lab)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTR</td>
<td>A103L</td>
<td></td>
<td>1</td>
<td>(0+3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. Complete Course/Program Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar System Astronomy Lab</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. Type of Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Type of Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. Repeat Status No</th>
<th># of Repeats</th>
<th>Max Credits</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>10. Grading Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Implementation Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>From: Sp/2010 To: /9999</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. Cross Listed with</th>
</tr>
</thead>
</table>

| 13. List any programs or college requirements that require this course |

<table>
<thead>
<tr>
<th>14. Coordinate with Affected Units:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emailed faculty list-serve</td>
</tr>
<tr>
<td>Department, School, or College</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. General Education Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checkbox (X)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. Course Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introductory astronomy laboratory with experiments in basic observational methods and data analysis applicable to the study of the solar system.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17a. Course Prerequisite(s) (list prefix and number)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>17b. Test Score(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17c. Co-requisite(s) (concurrent enrollment required)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTR A103</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17d. Other Restriction(s)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>17e. Registration Restriction(s) (non-codable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High school algebra and trigonometry or equivalent</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. Mark if course has fees</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>19. Justification for Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>The course title needs to more clearly describe the material covered. Also, this action re-links lecture and lab. Our attempt to disconnect the two did not succeed in that less than one-third of lecture students have participated in the lab. We feel the lab experience is central to this course, so we need to re-establish the requirement that all students complete the lab component.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. Course Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introductory astronomy laboratory with experiments in basic observational methods and data analysis applicable to the study of the solar system.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17a. Course Prerequisite(s) (list prefix and number)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>17b. Test Score(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17c. Co-requisite(s) (concurrent enrollment required)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTR A103</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17d. Other Restriction(s)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>17e. Registration Restriction(s) (non-codable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High school algebra and trigonometry or equivalent</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. Mark if course has fees</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>19. Justification for Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>The course title needs to more clearly describe the material covered. Also, this action re-links lecture and lab. Our attempt to disconnect the two did not succeed in that less than one-third of lecture students have participated in the lab. We feel the lab experience is central to this course, so we need to re-establish the requirement that all students complete the lab component.</td>
</tr>
</tbody>
</table>
University of Alaska Anchorage
Course Content Guide
ASTR A103L Solar System Astronomy Lab

I. Date of Initiation
 February 27, 2009

II. Course Information
 A. College: CAS
 B. Department: Physics & Astronomy
 C. Course Subject: ASTR
 D. Course Number: A103L
 E. Number of Contact Hours: 0+3
 F. Course Title: Solar System Astronomy Lab
 G. Grading Basis: A-F
 H. Course Description:
 Introductory astronomy laboratory with experiments in basic observational methods and data analysis applicable to the study of the solar system.

I. Co-Requisite:
 ASTR A103

J. Registration Restrictions:
 High school algebra and trigonometry or equivalent.

K. Fees
 Yes

L. Implementation Date:
 Spring 2010

III. Course Activities
 Standard laboratory class. Students will carry out assigned experimental procedures in a combination laboratory and outdoors (weather permitting) environment using lab equipment, research data, and/or computer simulations. Planetarium projects may be included as appropriate.

IV. Evaluation
 The grading scale is A-F. The student will be evaluated on a weekly basis through their preparatory work for labs, their participation and level of completion of the labs and a lab final.

V. Course Level Justification
 This course is a lower division course usually taken by freshmen and sophomores.

VI. Outline
 Observational Labs:
 1. Using a starfinder
 2. Identifying constellations
 3. Locating celestial objects with a coordinate grid
 4. Determining the Earth’s rotational rate using the Foucault pendulum
 5. Phases of Earth’s moon
 6. Observing Jupiter’s large moons and Kepler's Third Law
Classroom Labs:
1. Orbital elements of Minor Planets
2. Optics
3. Understanding the function of and using telescopes
4. Atomic spectra
5. Measuring the emission lines of Hydrogen and Helium
6. Using the Doppler shift to find extrasolar planets
7. Radar measurements of Mercury
8. Determining the orbit of Mercury
9. Lunar features and mountain heights
10. Plotting planet orbits and determining retrograde motion
11. Orbit determination from observations
12. Parallax
13. Determining the distance to planets from their retrograde motion

VII. Instructional Goals and Student Outcomes
A. Instructional Goals
1. To provide the student with weekly laboratory work to reinforce and give hands-on experience with most of the primary topics covered in the lecture.
2. To provide the student with the opportunity to handle optical instruments, primarily telescopes.
3. To provide the student with techniques and equipment useful in the study of astronomical phenomena.

B. Student Outcomes. The student will demonstrate the ability to:

Student Outcomes
Use appropriate tools in making basic astronomical observations.

Make basic observations of astronomical phenomena, create reliable observation records, and analyze data collected in experiments.
Discuss ways in which astronomical observations or calculations have advanced their understanding of important natural processes.

Assessment Procedures
Written lab reports, exams, optional student presentations, observation of performance in lab.

Make basic observations of astronomical phenomena, create reliable observation records, and analyze data collected in experiments.
Discuss ways in which astronomical observations or calculations have advanced their understanding of important natural processes.

Assessment Procedures
Written lab reports, exams, optional student presentations, observation of performance in lab.

VIII. Suggested Texts (at option of instructor)

IX. Bibliography and Resources
1a. School or College
AS CAS
1b. Division
AMSC Division of Math Science
1c. Department
Physics and Astronomy

2. Course Prefix
ASTR
3. Course Number
A104
4. Previous Course Prefix & Number
5a. Credits/CEU
3
5b. Contact Hours (Lecture + Lab)
(3+0)

6. Complete Course/Program Title
Stars, Galaxies and Cosmology
Abbreviated Title for Transcript (30 character)

7. Type of Course
☑ Academic
☐ Non-credit
☐ CEU
☐ Professional Development

8. Type of Action
☑ Course
☐ Program
☐ Prefix
☐ Credits
☐ Title
☐ Grading Basis
☐ Course Description
☐ Test Score Prerequisites
☐ Other Restrictions
☐ Class
☐ Level
☐ College
☐ Major
☐ Other CCG

9. Repeat Status No
of Repeats
Max Credits

10. Grading Basis
☐ A-F
☐ P/NP
☐ NG

11. Implementation Date
From: Sp/2010
To: /9999

12. ☐ Cross Listed with
☐ Stacked with
Cross-Listed Coordination Signature

13. List any programs or college requirements that require this course

14. Coordinate with Affected Units:
Emailed faculty list-serve
Department, School, or College
Initiator Signature
Date

15. ☑ General Education Requirement
☐ Oral Communication
☐ Written Communication
☐ Quantitative Skills
☐ Humanites
☐ Fine Arts
☐ Social Sciences
☐ Natural Sciences
☐ Integrative Capstone

16. Course Description
Introduction to solar, stellar, galactic, extragalactic astronomy. Stars, clusters, galaxies, stellar evolution, the universe as a whole, and cosmology.

17a. Course Prerequisite(s) (list prefix and number)
NA
17b. Test Score(s)
NA
17c. Co-requisite(s) (concurrent enrollment required)
ASTR A104L
17d. Other Restriction(s)
☐ College
☐ Major
☐ Class
☐ Level
17e. Registration Restriction(s) (non-codable)
High school algebra and trigonometry or equivalent

18. ☑ Mark if course has fees

19. Justification for Action
The course title needs to more clearly describe the material covered. Also, this action re-links lecture and lab. Our attempt to disconnect the two did not succeed in that less than one-third of lecture students have participated in the lab. We feel the lab experience is central to this course, so we need to re-establish the requirement that all students complete the lab component.
University of Alaska Anchorage
Course Content Guide
ASTR 104 Stars Galaxies and Cosmology

I. Date of Initiation
 February 27, 2009

II. Course Information
 A. College: CAS
 Department: Physics & Astronomy
 B. Course Subject: ASTR
 C. Course Number: A104
 D. Number of Credits/CEU: 3.0
 E. Number of Contact Hours: 3+0
 F. Course Title: Stars, Galaxies and Cosmology
 G. Grading Basis: A-F
 H. Course Description:
 Introduction to solar, stellar, galactic, extragalactic astronomy. Stars, clusters, galaxies, stellar evolution, the universe as a whole, and cosmology.
 I. Co-Requisite: ASTR A104L
 J. Registration Restrictions:
 High school algebra and trigonometry or equivalent
 K. Fees: Yes
 L. Implementation Date: Spring 2010

III. Course Activities
 This course will typically be structured to use a combination of lecture, planetarium demonstrations, peer-based instruction, and research-based activities.

IV. Evaluation
 The grading scale is A-F. The student will be evaluated on a weekly basis through quizzes, homework assignments, one or two midterms and a final exam.

V. Course Level Justification
 This course is a lower division course usually taken by freshmen and sophomores.

VI. Outline
 1. Gravitation, light and atoms, telescopes
 2. Basics of relativity and a layman’s introduction to quantum mechanics
 3. Our star, the Sun
 4. Stars and their spectra
 5. Stellar distances and motions
 6. Doubles, variables and clusters
 7. The interstellar medium
 8. Birth, youth and middle age of stars
 9. Aging and death of solar-like and intermediate mass stars: planetary nebulae and novae
 10. Aging and death of massive stars: supernovae
 11. Pulsars, neutron stars, and black holes
12. Our galaxy, the Milky Way
13. Galaxies
14. Quasars
15. Cosmology

VII. Instructional Goals and Student Outcomes
A. Instructional Goals.
1. To provide the student with an in-depth understanding of the fundamental concepts of classical astronomy, with emphasis on techniques and problems in stellar astronomy, galactic and extragalactic astronomy, and cosmology.
2. To provide the student with information on historical aspects of the major areas of stellar astronomy, and a survey of the major ideas encountered in cosmology, with a strong emphasis on recent results from space research.
3. To apply these concepts and perspectives to an analysis of case studies from modern astronomy research.

B. Student Outcomes. The student will demonstrate the ability to:

Student Outcomes
- Define and explain the basic terms and concepts used in stellar, galactic, extragalactic astronomy, and cosmology.
- Apply the scientific method and use the procedures and techniques of basic stellar, galactic, and extragalactic astronomy and cosmology in solving typical problems in the field.
- Identify ways in which this area of astronomy has advanced the understanding of important natural processes.
- Relate knowledge of advances in historical stellar, galactic, and extragalactic astronomy and cosmology to how these advances have impacted thought and technology.

Assessment Procedures
- Objective exams, homework, in-class tutorials, and optional student presentations.
- Objective exams, homework, in-class tutorials, and optional student presentations.
- Objective exams, homework, in-class tutorials, and optional student presentations.
- Objective exams, homework, in-class tutorials, and optional student presentations.

VIII. Suggested Texts (at option of instructor)

IX. Bibliography and Resources
Curriculum Action Request

Proposal to Initiate, Add, Change, or Delete a Course or Program of Study

<table>
<thead>
<tr>
<th>1a. School or College</th>
<th>1b. Division</th>
<th>1c. Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS CAS</td>
<td>AMSC Division of Math Science</td>
<td>Physics and Astronomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Course Prefix</th>
<th>3. Course Number</th>
<th>4. Previous Course Prefix & Number</th>
<th>5a. Credits/CEU</th>
<th>5b. Contact Hours (Lecture + Lab)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTR</td>
<td>A104L</td>
<td></td>
<td>1</td>
<td>(0+3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. Complete Course/Program Title</th>
<th>Abbreviated Title for Transcript (30 character)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stars, Galaxies and Cosmology Lab</td>
<td>Stars, Galaxies, Cosmology Lab</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. Type of Course</th>
<th>8. Type of Action</th>
<th>9. Repeat Status No</th>
<th># of Repeats</th>
<th>Max Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic</td>
<td>Course</td>
<td>No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Grading Basis</th>
<th>11. Implementation Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-F</td>
<td>semester/year</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>From: Sp/2010</th>
<th>To:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>/9999</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. Cross Listed with</th>
<th>Stacked with</th>
<th>Cross-Listed Coordination Signature</th>
</tr>
</thead>
</table>

13. List any programs or college requirements that require this course

- [] General Education Requirement
- [] Oral Communication
- [] Written Communication
- [] Quantitative Skills
- [] Humanities
- [] Fine Arts
- [] Social Sciences
- [] Natural Sciences
- [] Integrative Capstone

14. Coordinate with Affected Units:

- Emailed faculty list-serve
- Department, School, or College

- Initiator Signature

- Date

15. Course Description

Introductory astronomy laboratory with experiments in basic observational methods and data analysis applicable to the study of the Sun, stellar, galactic, and extragalactic astronomy.

16a. Course Prerequisite(s) (list prefix and number)

16b. Test Score(s)

NA

16c. Co-requisite(s) (concurrent enrollment required)

ASTR A104

16d. Other Restriction(s)

[] College [] Major [] Class [] Level

16e. Registration Restriction(s) (non-codable)

High school algebra and trigonometry or equivalent.

17a. Course Prerequisite(s) (list prefix and number)

17b. Test Score(s)

NA

17c. Co-requisite(s) (concurrent enrollment required)

ASTR A104

17d. Other Restriction(s)

[] College [] Major [] Class [] Level

17e. Registration Restriction(s) (non-codable)

High school algebra and trigonometry or equivalent.

18. Mark if course has fees

19. Justification for Action

The course title needs to more clearly describe the material covered. Also, this action re-links lecture and lab. Our attempt to disconnect the two did not succeed in that less than one-third of lecture students have participated in the lab. We feel the lab experience is central to this course, so we need to re-establish the requirement that all students complete the lab component.
University of Alaska Anchorage
Course Content Guide
ASTR A104L Stars, Galaxies and Cosmology Lab

I. Date of Initiation
 February 27, 2009

II. Course Information
 A. College: CAS
 B. Department: Physics & Astronomy
 C. Course Subject: ASTR
 D. Course Number: A104L
 E. Number of Credits/CEU: 1.0
 F. Number of Contact Hours: 0+3
 G. Course Title: Stars, Galaxies and Cosmology Lab
 H. Grading Basis: A-F
 I. Course Description:
 Introductory astronomy laboratory with experiments in basic observational methods and data analysis applicable to the study of the Sun, stellar, galactic, and extragalactic astronomy.
 J. Co-Requisite:
 ASTR A104
 K. Registration Restrictions:
 Yes
 L. Implementation Date: Spring 2010

III. Course Activities
 Standard laboratory class. Students will carry out assigned experimental procedures in a combination laboratory and outdoors (weather permitting) environment using lab equipment, research data, and/or computer simulations. Planetarium based exercises may be assigned as appropriate.

IV. Evaluation
 The grading scale is A-F. The student will be evaluated on a weekly basis through their preparatory work, their participation and level of completion of the labs and a lab final.

V. Course Level Justification
 This course is a lower division course usually taken by freshmen and sophomores.

VI. Outline

 Observational Labs:
 1. Identifying constellations
 2. Sunspots and the determination of the solar rotational period
 3. Variable stars: Algol and Delta Cephei
 4. Deep sky objects
Classroom Labs:
1. Orbital elements of binary stars
2. Understanding the function of and using telescopes
3. Measuring and identifying emission lines of gases
4. Spectral Classification
5. Photometry and Spectroscopy
6. Pleiades: age and distance of a star cluster using spectroscopic and photometric data
7. Parallax
8. Hyades: distance determination from proper motion data
9. Analyzing HR-diagrams of star clusters
10. Flow of energy out of the Sun
11. Using the Doppler shift to determine the orbits of binary stars

VII. Instructional Goals and Student Outcomes
A. Instructional Goals. The instructor will present:
1. Weekly laboratory work to reinforce and give hands-on experience with most of the primary topics covered in the lecture.
2. The opportunity to handle optical instruments, primarily telescopes.
3. Techniques and equipment useful in the study of astronomical phenomena.

B. Student Outcomes. The student will demonstrate the ability to:

Student Outcomes

Assessment Procedures

Use the tools employed in making basic astronomical observations.
Written lab reports, exams, optional student presentations, observation of performance in lab.

Make basic observations of astronomical phenomena, create reliable observation records, and analyze data collected in experiments.
Written lab reports, exams, optional student presentations, observation of performance in lab.

Discuss ways in which astronomical observations have advanced their understanding of important natural processes.
Written lab reports, exams, optional student presentations, observation of performance in lab.

VIII. Suggested Texts (at option of instructor)

IX. Bibliography and Resources
1a. School or College
HW CHSW

1b. Division
ADHS Div of Human Svs Health Sci

1c. Department
HS

2. Course Prefix
HS

3. Course Number
A491

4. Previous Course Prefix & Number
N/A

5a. Credits/CEU
3

5b. Contact Hours (Lecture + Lab)
(3+0)

6. Complete Course/Program Title
Health Issues in Alaska

Abbreviated Title for Transcript (30 character)

7. Type of Course
☒ Academic ☐ Non-credit ☐ CEU ☐ Professional Development

8. Type of Action
☒ Course ☐ Program

☐ Add ☐ Change ☐ Delete

(mark appropriate boxes)

9. Repeat Status
☐ No ☐ Yes ☐ Max Credits

☐ # of Repeats

10. Grading Basis
☒ A-F ☐ P/NP ☐ NG

11. Implementation Date
semester/year

From: Fall/2009 To: /9999

12. ☐ Cross Listed with NA ☐ Stacked with NA

Cross-Listed Coordination Signature

13. List any programs or college requirements that require this course
BSHS Physician Assistant Track

14. Coordinate with Affected Units:
Faculty Listserv Department, School, or College

Initiator Signature Date

15. ☒ General Education Requirement
☐ Oral Communication ☐ Written Communication ☐ Quantitative Skills ☐ Humanities

☐ Fine Arts ☐ Social Sciences ☐ Natural Sciences ☒ Integrative Capstone

16. Course Description
Describes historical to present health status of the Alaskan emphasizing health disparities. Students research and implement strategies to reduce risk through health behavior change; evaluate clinical practices using quality measures to improve care quality; and explore social, cultural, and economic factors related to health policy and the clinician’s role in health advocacy.

17a. Course Prerequisite(s) (list prefix and number)
HS A463 OR HS A465

17b. Test Score(s)
N/A

17c. Co-requisite(s) (concurrent enrollment required)
N/A

17d. Other Restriction(s)
☒ College ☐ Major ☐ Class ☐ Level

17e. Registration Restriction(s) (non-codable)
Health Sciences Physician Assistant Track Major or Instructor permission

18. ☐ Mark if course has fees

19. Justification for Action
HS A491 is a new course that will serve as the GER Integrative Capstone for Health Science Physician Assistant Track majors.

Initiator (faculty only) Date

John Riley

Initiator (TYPE NAME)

Approved

Disapproved:

Dean/Director of School/College Date

Approved

Disapproved:

Undergraduate or Graduate Date

Academic Board Chairperson

Approved

Disapproved:

Provost or Designee Date

Department Chairperson Date

Curriculum Committee Chairperson Date
I. Initiation Date

Spring 2009

II. Course Information:

A. College: College of Health and Social Welfare
B. Course Subject/Number: HS A491
C. Course Title: Health Issues in Alaska
D. Credit Hours: 3
E. Contact Hours: 3 + 0
F. Grading Basis: A-F
G. Implementation Date: Fall 2009
H. Course Description: Describes historical to present health status of the Alaskan emphasizing health disparities. Students research and implement strategies to reduce risk through health behavior change; evaluate clinical practices using quality measures to improve care quality; and explore social, cultural, and economic factors related to health policy and the clinician’s role in health advocacy.
I. Course Prerequisites: HS A463 OR HS A465
J. Test Scores: N/A
K. Co-requisites: None
L. Other Restrictions: Major
M. Registration Restrictions: Health Sciences Physician Assistant Track Major or Instructor permission
N. Course Fee: None

III. Course Level Justification:

Requires senior level placement to allow students to build upon and integrate knowledge introduced in previous clinical courses and the general education core in the application of relevant population-focused health care.

IV. Instructional Goals and Student Outcomes

A. GER Capstone Goals

1. To integrate concepts, knowledge, insights and questions from multiple disciplines.
2. To enhance language-based communication skills (reading, writing, listening, speaking).
3. To expand information literacy.
4. To strengthen critical thinking skills.
B. The instructor will:

1. Provide the historical context of health care in Alaska as a foundation for analysis of current health care issues.
2. Clarify the role and responsibilities of the clinician in population-focused health care.
3. Introduce students to the principles and practice of population-focused health care as it relates to prevention and improving the quality of care.
4. Provide students with an understanding of the socio-cultural and economic factors that influence the health of individuals and populations.
5. Enable students to apply population based indicators in the clinical context.
6. Acquaint students with health behavior change, disease prevention and chronic disease quality management strategies.
7. Create an awareness of the impact of health policy on the health of populations and the importance of the clinician’s involvement in advocacy.
8. Foster an understanding of health and health disparities.
9. Expand students’ ability to use effective communication and collaboration in applying population-focused health interventions that adhere to the values, ethics, and clinical standards of the physician assistant profession.
C. Student outcomes and assessment measures

<table>
<thead>
<tr>
<th>Integrative Capstone Goal</th>
<th>Student Outcomes: The students will:</th>
<th>Assessment Measures May Include:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Knowledge Integration: To integrate concepts, knowledge, insights and questions from multiple disciplines</td>
<td>Utilize the historical context of health care in Alaska as a foundation for analyzing current health care issues</td>
<td>Paper 1; Discussion Board</td>
</tr>
<tr>
<td></td>
<td>Trace current epidemiological trends in the health status and health care of populations and vulnerable groups</td>
<td>Paper 2; Discussion Board</td>
</tr>
<tr>
<td></td>
<td>Contrast essential principles, concepts and features of population-focused health care with individual-focused health care</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trace current epidemiological trends in the health status and health care of populations and vulnerable groups</td>
<td>Paper 2; Discussion Board</td>
</tr>
<tr>
<td></td>
<td>Contrast essential principles, concepts and features of population-focused health care with individual-focused health care</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assess the health needs of populations and vulnerable groups using appropriate public health, and epidemiological strategies</td>
<td>Paper 2; Discussion Board</td>
</tr>
<tr>
<td></td>
<td>Apply population-based indicators in the clinical context</td>
<td>Paper 2; Discussion Board</td>
</tr>
<tr>
<td></td>
<td>Develop familiarity with the application of telemedicine in Alaska</td>
<td>Paper 4; Discussion Board</td>
</tr>
<tr>
<td>2. To enhance language-based communication skills (reading, writing, listening, speaking)</td>
<td>Utilize the patient-centered framework in effecting health behavior change</td>
<td>Community Health Advocacy letter; Changing Health Behavior Project; Quality of Chronic Disease Project; Paper 3; Discussion Board</td>
</tr>
<tr>
<td></td>
<td>Utilize effective skills in communicating and collaborating with peers, faculty, agency patients and community members</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Articulate the role of the clinician in ensuring that the health needs of populations and vulnerable groups are met</td>
<td></td>
</tr>
<tr>
<td>3. To expand information literacy</td>
<td>Critically analyze current literature and research to derive and implement evidence-based interventions that effect health behavior change and advance disease prevention and chronic disease management outcomes for populations and vulnerable groups</td>
<td>Community Health Advocacy letter; Changing Health Behavior Project; Quality of Chronic Disease Project; Paper 3; Discussion Board</td>
</tr>
<tr>
<td>4. To strengthen critical thinking skills</td>
<td>Articulate the role of the clinician in ensuring that the health needs of populations and vulnerable groups are met</td>
<td>Community Health Advocacy letter; Paper 3; Discussion Board</td>
</tr>
<tr>
<td></td>
<td>Explain the policy-making process and how political strategies can be used to enhance the clinician’s involvement in health advocacy</td>
<td></td>
</tr>
</tbody>
</table>
D. Description of Assessment Measures

1. **Papers.** Four papers will cover content presented in the course. Papers are designed to test students primarily at the level of analysis and application, as analysis and application questions generally require a higher level of critical thinking. The student’s ability to clearly express ideas in writing is evaluated with each paper. Each paper is worth 10 - 15% of the course grade, for an overall total of 50%.

 GER Outcomes: See Table I

2. **Discussion Board.** Students are assigned to present their perspectives on a designated issue or an article related to a class topic in the class discussion board three times per week. Although the criteria for completion and evaluation of these assignments are specific to each, a criterion for evaluating the student’s ability to clearly express ideas in writing is listed with each assignment. Students are expected to complete these assignments and submit them on the scheduled due date.

 GER Outcomes: See Table I

3. **Changing Health Behavior Project:** The purpose of the project is for the student to gain an understanding of brief clinical interventions techniques to identify patients’ health concerns, and help patients develop strategies to set appropriate change goals and successfully effect health behavior change to prevent the complications of chronic illness.

 Project – Assessment, Planning, Implementation and Evaluation. Students work with patients in their clinical practice and help a patient identify modifiable risk behaviors they would like to change and help the patient set realistic goals and follow through with the patient.

 Project Report. At the completion of the project, each student submits a report documenting their intervention and presents a script template or their interventions and posts it for critical analysis by their classmates.

 GER Outcomes: See Table I

4. **Quality of Chronic Disease Care Project:** The purpose of the project is for students to gain an understanding of the principles of chronic disease management through evaluating a clinical practice for the quality of chronic disease care indicators and recommending changes to improve the quality.

 GER Outcomes: See Table I

5. **Health Care Access Advocacy Assignment:** Students research health access issues to determine its effect on the health of a population or vulnerable group. Students take a position on the issue/policy and write a letter to the editor advocating for their position on the issue/policy.

 GER Outcomes: See Table I
V. Topical Course Outline

A. The History of Health Care in Alaska
 1. Health of Alaska Natives at the Time of Contact
 a. General Health Status
 b. Disorders Relating to the Environment
 c. Infections
 d. Chronic and Degenerative Diseases
 2. Health and Early History of Alaska
 a. European Contact, Exploration and the Early Fur Trade
 b. The Years of the Russian American Company
 c. The Health Care System of the Russian-American Company
 d. Health Care and the United States Government
 3. Special Health Problems in Early Alaska History
 a. Epidemics
 b. Sexually Transmitted Diseases
 c. Tuberculosis
 d. Tobacco use
 e. Alcohol
 f. Abuse, Hunger and Violence

B. Improving the Health Status of Alaskans
 1. Prevention and Health Promotion in Primary Care
 a. Public Health Outcomes
 b. Healthy Alaskans 2010
 c. Healthy People 2020
 2. Processes
 a. Health Promotion
 b. Health Protection
 c. Preventive Services and Access to Care
 3. Clinical Application
 a. Evidence-based Preventive Health Care
 b. Screening Tools in Primary Care
 c. Public Health Reporting
 d. Public Health and Safety
 e. Advocacy and Health Care Access

C. Improving the Quality of Health Care in Alaska
 1. Population Based Health Care
 2. Improving Chronic Disease Care in the Real World
 3. Evaluation and Implementation of Clinical Practice Guidelines
 4. Patient Centered Care

D. Changing Health Care Behavior
 1. Theory and Practice of Health Behavior Change
 2. Exploring Importance, Building Confidence and Reducing Resistance
 3. Clinical Application

E. Telehealth in Alaska
 1. The AFHCAN Network
 2. The Telemedicine Cart in Rural Alaska
 3. Clinical Email Privacy
 4. Internet Clinical Resources for Patients
VI. Suggested Texts

VII. Bibliography

1a. School or College
AS CAS
1b. Division
AFAR Division of Fine Arts
1c. Department
Theatre and Dance

2. Course Prefix
DNCE
3. Course Number
A370
4. Previous Course Prefix & Number
5a. Credits/CEU
3
5b. Contact Hours (Lecture + Lab)
(3+0)

6. Complete Course/Program Title
Interdisciplinary Dance Studies: Issues and Methods
Inter Dnce Studies: Methods
Abbreviated Title for Transcript (30 character)

7. Type of Course
☐ Academic
☐ Non-credit
☐ CEU
☐ Professional Development

8. Type of Action
☐ Add
☐ Change
☐ Delete
☐ Prefix
☐ Credits
☐ Title
☐ Grading Basis
☐ Course Description
☐ Test Score Prerequisites
☐ Other Restrictions
☐ Class
☐ College
☐ Major
☐ Other CCG : capstone status
☐ Course Number
☐ Contact Hours
☐ Repeat Status
☐ Cross-Listed/Stacked
☐ Co-requisites
☐ Registration Restrictions

9. Repeat Status No
of Repeats
Max Credits

10. Grading Basis
☐ A-F
☐ P/NP
☐ NG

11. Implementation Date
semester/year
From: Fall/2009
To: 9999

12. ☐ Cross Listed with
☐ Stacked with
Cross-Listed Coordination Signature

13. List any programs or college requirements that require this course
Dance minor

14. Coordinate with Affected Units:
UAA List Serve
Department, School, or College
Initiator Signature
Date

15. ☐ General Education Requirement
☐ Oral Communication
☐ Written Communication
☐ Quantitative Skills
☐ Social Sciences
☐ Natural Sciences
☐ Humanities
☐ Integrative Capstone

16. Course Description
Explores how dance scholars use methods drawn from a variety of disciplines to consider dance as movement, culture, artifact, language, and art. Applies and integrates these methods in relation to video materials and live dance events. Case studies will vary to reflect opportunities for viewing dance locally, and student interest.

17a. Course Prerequisite(s) (list prefix and number)
DNCE A170 and [ENGL A211, or ENGL A212, or ENGL A213, or ENGL A214] with a grade of C or better.

17b. Test Score(s)
n/a

17c. Co-requisite(s) (concurrent enrollment required)
n/a

17d. Other Restriction(s)
College
Major
Class
Level

17e. Registration Restriction(s) (non-codable)
Completion of GER Tier 1 (basic college-level skills) courses and junior standing

18. ☐ Mark if course has fees

19. Justification for Action
To address CAS need for integrated capstone offerings. Course content guide needs to be updated and course description needs more clarity.

Initiator (faculty only)
Date

Gabrielle Barnett
Initiator (TYPE NAME)

Approved
Disapproved:
Dean/Director of School/College
Date

Approved
Disapproved:
Department Chairperson
Date

Approved
Disapproved:
Curriculum Committee Chairperson
Date

Approved
Disapproved:
Undergraduate or Graduate
Academic Board Chairperson
Date

Approved
Disapproved:
Provost or Designee
Date

23
Course Content Guide: Dance A370 (Interdisciplinary Dance Studies)

I Course Revision Date March 2009

II

a. College Arts and Sciences

b. Course Subject/Number DNCE A370

c. Number of credits 3

d. Course Title Interdisciplinary Dance Studies: Issues and Methods

e. Grading Basis A-F

f. Course Description Explores how dance scholars use methods drawn from a variety of disciplines to consider dance as movement, culture, artifact, language, and art. Applies and integrates these methods in relation to video materials and live dance events. Case studies will vary to reflect opportunities for viewing dance locally, and student interest.

g. Prerequisites DNCE A170 and [ENGL A214, or ENGL A211, or ENGL A213, or ENGL A212] with a grade of C or better

Co-requisite: none

Registration restrictions: completion of GER Tier 1 (basic college-level skills) courses and junior standing

h. Degree program status Required for Dance minor

i. Intended students 1.) Students declaring a minor in dance; 2.) students seeking an upper division sequel to DNCE A170 (Dance Appreciation); 3.) students with junior standing seeking an interdisciplinary integrative course to complement their major (e.g. anthropology, theatre, history, languages, business, art, philosophy, sociology, journalism).

III Course Attributes

a. Course Activities:

Course content is delivered through short lectures, facilitated discussions, assigned readings, moving and observing exercises. Video-taped dance material will be used as well as “live” dance examples.

Students practice reading and discussing scholarly essays, observing and analyzing movement, writing opinion papers and literature reviews, as well as conducting and presenting a research project, in both written and live (spoken/movement/visual) formats.
b. Course Level and Capstone Status Justification: Integrates GER skills (Tier 1) with perspectives of the Disciplinary Area (Tier 2). Addresses the following Integrated Capstone goals and outcomes:

- **Knowledge Integration**: Requires synthesis of information, skills, and concepts drawn from historical, ethnographic, language-based, aesthetic, and kinesthetic approaches to knowledge in the context of real-life applications in the field of dance.

- **Communication Intensive**: requires preparation of formal oral presentations and analytic writing assignments based on existing multi-disciplinary dance scholarship. Requires exercise of small group communication skills in weekly class discussions, based on readings, dance viewing, and movement explorations.

- **Critical Thinking**: requires preparation of reasoned responses to critical essays and participation in topical debates related to the history, aesthetics, cultural significance, communicative potential, and physical practice of dance. Emphasizes the relevance of the critical dimensions of academic reasoning within, and across, these disciplines to the study and practice of dance.

- **Information Literacy**: requires a research project involving the collection, analysis, synthesis, and documentation of materials relevant to a specific topic within the field of dance studies. Requires analysis and evaluation of primary and secondary dance studies materials (such as critical essays, performance footage, artist interviews, reviews).

- **Quantitative Analysis**: encourages consideration of quantitative historical, economic, demographic, and cultural data as relevant to the study of dance.

IV Evaluation

Students will be evaluated on the basis of their participation in class activities, and assignments which assess their ability to:

- synthesize knowledge (methods and content) derived from the several disciplinary areas introduced in the course in relation to specific instances of dance

- communicate ideas in written, spoken, and visual or kinesthetic formats

- define issues, identify problems, describe situations, and apply both relevant information and reasoned thought towards analysis, or resolution, of issues, problems, and/or situations salient to the study and professional practice of dance in the 21st century.

- gather, assess, and apply information relevant to the study of dance from a variety of sources, including primary and secondary historical sources, ethnographies, academic essays, mass media, personal interviews, videos, and first-hand observation.

V Goals and Outcomes

Goals

The instructor will:

- Demonstrate how to use methods drawn from specific disciplines to analyze examples of dance in terms of history, culture, language, aesthetics and movement, in support of a critical evaluation of individual views.
• Demonstrate how to gather and synthesize information drawn from a variety of sources and disciplines relevant to specific examples of dance, comparing and assessing the perspectives provided by those different sources and disciplines.

• Explain issues pertinent to an interdisciplinary study of dance, particularly those stemming from the emergent realities of the 21st century, such as diversity, globalization, and social dynamics.

• Provide opportunities to use methods drawn from specific disciplines to analyze examples of dance in support of critical evaluations of individual views.

• Provide opportunities to gather, synthesize and present information drawn from a variety of sources and disciplines relevant to specific examples of dance.

• Provide opportunities to discuss orally, in writing, and through visual media such as posters and slide shows, issues pertinent to an interdisciplinary study of dance.

Outcomes

Students will be able to:

• Analyze specific examples of dance in terms of history, culture, language, aesthetics and movement, using methods appropriate to those disciplinary approaches, and evaluating individual views critically.

• Gather, synthesize, and present information drawn from a variety of sources and disciplines relevant to specific examples of dance, comparing and assessing the perspectives provided by those different sources and disciplines.

• Discuss orally, in writing, and through visual media such as posters and slide shows, issues pertinent to an interdisciplinary study of dance, particularly those stemming from the emergent realities of the 21st century, such as diversity, globalization, and social dynamics.

VI Topical Course Outline

1. Dance as Movement:

1.1 METHODS: How do dancers and scholars observe, analyze, acquire and transmit specific dance movement?

1.2 LITERATURE REVIEW: What important and/or controversial ideas related to movement are relevant to dance scholars (for instance, somatics, embodied knowledge, Laban-analysis, movement perception, cultural bias.) What does the study of dance contributed to our larger understanding of movement?

1.3 CASE STUDIES: How can we apply these methods and ideas to specific examples of dance?

2. Dance as Culture
2.1 METHODS: How do dancers and scholars approach dance as culture? How does understanding the link between dance and culture enhance our understanding of both dance and culture?

2.2 LITERATURE REVIEW: What important and/or controversial topics with the fields of culture studies, cultural anthropology, and sociology are relevant to dance scholars? What does the study of dance contribute to these fields?

2.3 CASE STUDIES: How can we apply these methods and ideas to specific examples of dance?

3. Dance as Language

3.1 METHODS: How do dancers and scholars approach dance as language? How does understanding the link between dance and language enhance our understanding of both dance and language?

3.2 LITERATURE REVIEW: What important and/or controversial topics with the fields of language theory, semiotics, hermeneutics are relevant to dance scholars? What does the study of dance contribute to these fields?

3.3 CASE STUDIES: How can we apply these methods and ideas to specific examples of dance?

4. Dance as Artifact

4.1 METHODS: How do dancers and scholars approach dance as a historical artifact? How does understanding the link between dance and history enhance our understanding of both dance and history?

4.2 LITERATURE REVIEW: What important and/or controversial topics with the fields of history and historiography are relevant to dance scholars? What does the study of dance contribute to these fields?

4.3 CASE STUDIES: How can we apply these methods and ideas to specific examples of dance?

5. Dance as Art

5.1 METHODS: How do dancers, scholars, and critics approach dance as an aesthetic product? How does understanding the link between dance and art enhance our understanding of both dance and art?

5.2 LITERATURE REVIEW: What important and/or controversial topics with the fields of aesthetics and arts criticism are relevant to dance scholars? What does the study of dance contribute to these fields?

5.3 CASE STUDIES: How can we apply these methods and ideas to specific examples of dance?

BIBLIOGRAPHY

TEXTBOOKS

Dills, Ann and Albright, Ann Cooper. Moving History / Dancing Cultures: a Dance History Reader.

SUPPLEMENTAL READINGS

Manning, Susan. *Ecstasy and the Demon: Feminism and Nationalism in the Dance of Mary...*

Academic Dance Journals

- Asian Theatre Journal
- Contact Quarterly
- Dance Research
- Dance Research Journal
- Dance Theatre Journal
- The Drama Review
- Proceedings of the Study of Dance Conference
- Writings on Dance