UAA 3D printer and professor Jeff Hoffman assist in dramatic face reconstruction

by Kathleen McCoy  |   

SaveFace(A version of this story appeared in the Anchorage Daily News on June 9, 2013.)

Repairing a severely damaged human face is never easy, but an Anchorage surgeon and a mechanical engineering professor from UAA shaved hours off the challenge with computer software and 3-D modeling.

The surgeon, James Kallman, was recently highlighted in a new book, "Beyond the Bear," for repairs to fisherman Dan Bigley after a brown bear knocked him down at the Russian River and severely chewed his face and forehead. That surgery a decade ago took Kallman and his colleagues 14 hours.

CT scan of patient's face before reconstructive surgery

CT scan of patient's face before reconstructive surgery

The repair to a Southcentral man's face this spring -- shattered after a nylon strap snapped, slamming a metal fixture into his mid-face -- was accomplished in about eight hours, Kallman said. Evolving technology made the difference, and the use of a 3-D printer in UAA's Rapid Prototype Lab under the direction of professor Jeff Hoffman was part of the solution.

Kallman was on call for Providence Alaska Medical Center's Emergency Room one week in late April. The patient, Terrence Hinz, had taken a blow so severe that it shattered his jaw, forehead, cheekbones and eye sockets. It pushed his nose back into his face. The internal bone that makes a floor for the brain was shattered, and his brain had herniated down into his nose.

After stabilizing Hinz and closing his surface wounds, the surgeon had to allow about a week for swelling to go down before he could begin repairs. While he waited, Kallman began brainstorming better ways to deal with the puzzle he would soon have to put back together. If he could only figure out a way to turn the patient's two-dimensional CT scan into a physical 3-D model, he could use it as a template for designing implants well ahead of surgery, saving valuable time in the operating room.

"I blindly called UAA," he remembered. "I said, 'I've got this guy's face to repair and it's essentially shattered. It would really, really be helpful if I could get a 3-D model.' "

On the other end, Jeff Hoffman took the call. He was right in the middle of finalizing spring semester, with stacks of homework assignments students needed back.

Side-by-side 3D models of patient's injuries

Side-by-side 3D models of patient's injuries. UAA's model is on the left.

"I'll try," Hoffman told Kallman. He dropped everything and began figuring out how he could turn a CT scan into a format that could be rendered on a 3-D printer.

The first thing Hoffman had to do was find a way to isolate bone, including fragments, from all the other tissue. Amazingly, he found open source software, called Slicer, to do it. He took the refined file created by Slicer and sent it through UAA's 3-D printer. The large model took 26 hours to print, creating the polymer version of the skull that documented Hinz's crushed face.

Hoffman had a volunteer student, Sean Jensen, monitoring the printer's progress as it lay down layer after layer of cream-colored polymer. "When I got back," Hoffman said, "there were half a dozen students waiting for me with questions like, 'You're printing a skull?' "

Hoffman provided the model to Kallman Saturday morning, giving him time to design facial reconstruction plates before surgery Monday morning.

Working on a parallel path, Kallman had contacted local representatives from the biomedical company Stryker to assist with selecting proper implants.

New framework for the mid-face, using titanium mesh

New framework for the mid-face, using titanium mesh

"He'd completely lost the framework of the face that we typically use for repairs," the surgeon explained. Kallman had to rebuild it. He needed to re-secure Hinz's forehead and brain support, bring the nose forward and restore vertical supports in the middle of the face between the forehead and the jaw.

Stryker representatives put Kallman in touch with a company called Medical Modeling out of Colorado to create the "hoped for" finished face, a second 3-D model. With both models in hand that Saturday, Kallman was able to try out different materials, pre-forming the implants he would use in the operating room.

When Kallman began surgery Monday morning, he took both models into the operating room for reference. He was joined by his practice partner of many years, Dr. Dwight Ellerbee.

Later, Ellerbee said the software and 3-D models had allowed Kallman to get most of the trial-and-error work done ahead of time, without the pressure of a patient lying on the table exposed to potential infection.

Forehead repair; titanium mesh is bone friendly

Forehead repair; titanium mesh is bone friendly

"He did all the thinking outside the operating room," Ellerbee said. "All we had to do was execute the plan."

With Alaska 3,500 miles away from the next closest medical center, and Alaskans exposed to potentially serious injuries from logging, mining and fishing jobs, not to mention their propensity to live and play hard, both Kallman and Hoffman are excited by the prospects of their collaboration. Use of software and 3-D modeling to help in reconstructive surgery could be invaluable.

Hinz, 22, is home mending well, has sight in both eyes, and is cognitively at 100 percent. Kallman and Hoffman plan to document their process and share the results with the biomedical community.

Creative Commons License "UAA 3D printer and professor Jeff Hoffman assist in dramatic face reconstruction" is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.