General Education Review Committee
Agenda

12:30-1:30
March 9, 2012
ADM 204

I. Call to Order

Roll
() Vacant UAB/COH Social Sciences
() Utpal Dutta UAB/SOE
() Kevin Keating UAB/Library
() Kathryn Hollis-Buchanan
() Vacant UAB
() Suzanne Forster CAS Humanities
() Len Smiley CAS Quantitative Skills
() Marcia Stratton CAS Oral Communication
() Walter Olivares CAS Fine Arts
() Robert Capuozzo COE
() Sandra Pence CTC/COH/Chair
() Kyle Hampton CBPP Social Sciences
() Deborah Fox Mat-Su Written Communication
() Hilary Davies UAB Ex officio/UAB Chair
() Bart Quimby UAB Ex officio/OAA
() Vacant Student

II. Approval of Agenda (pg. 1)

III. Approval of Summary (pg. 2)

IV. Report from Interim Vice Provost for Curriculum and Assessment Bart Quimby
Please review Bart’s report on the AAC&U Conference at:
http://anc-tbquimby01.uaa.alaska.edu/1202AACU/TBQReport1202.htm

V. Chair’s Report – Sandra Pence

VI. Course Action Requests
Chg CE A438 Design of Civil Engr Systems (3 cr)(3+0)(pg. 3-12)

VII. Old Business
A. UAA Table of GER Substitutions (pg. 13-14)
B. Develop recommendation for OAA regarding GER assessment process

VIII. New Business
A. Review Faculty Senate Bylaws governing GERC

IX. Informational Items and Adjournment
1:00-1:30
February 24, 2012
ADM 204

I. Call to Order

Roll
() Vacant UAB/COH Social Sciences
(x) Utpal Dutta UAB/SOE
(x) Kevin Keating UAB/Library
(x) Kathryn Hollis-Buchanan UAB
() Vacant UAB
(e) Suzanne Forster CAS Humanities
(x) Len Smiley CAS Quantitative Skills
(x) Marcia Stratton CAS Oral Communication
(x) Walter Olivares CAS Fine Arts
(x) Robert Capuozzo COE
(e) Sandra Pence CTC/COH/Chair
(e) Kyle Hampton CBPP Social Sciences
(x) Deborah Fox Mat-Su Written Communication
(x) Hilary Davies UAB Ex officio/UAB Chair
(e) Bart Quimby UAB Ex officio/OAA
() Vacant Student

II. Approval of Agenda (pg. 1)
Approved

III. Approval of Summary (pg. 2)
Approved

IV. Report from Interim Vice Provost for Curriculum and Assessment Bart Quimby

V. Chair’s Report – Sandra Pence

VI. Course Action Requests
Chg CE A438 Design of Civil Engr Systems (4 cr)(4+0)(pg. 3-5)
Accepted for first reading

VII. Old Business

VIII. New Business

A. GER Purge List (pg. 6)

IX. Informational Items and Adjournment
Course Action Request
University of Alaska Anchorage
Proposal to Initiate, Add, Change, or Delete a Course

<table>
<thead>
<tr>
<th>1a. School or College</th>
<th>1b. Division</th>
<th>1c. Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN SOENGR</td>
<td></td>
<td>Civil Engineering</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Course Prefix</th>
<th>3. Course Number</th>
<th>4. Previous Course Prefix & Number</th>
<th>5a. Credits/CEUs</th>
<th>5b. Contact Hours (Lecture + Lab)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE</td>
<td>A438</td>
<td>N/A</td>
<td>3</td>
<td>(3+0)</td>
</tr>
</tbody>
</table>

6. Complete Course Title

Design of Civil Engineering Systems

Abbreviated Title for Transcript (30 character)

7. Type of Course
- [x] Academic
- [] Preparatory/Development
- [] Non-credit
- [] CEU
- [] Professional Development

8. Type of Action:
- [x] Add
- [] Change
- [] Delete

If a change, mark appropriate boxes:
- [] Prefix
- [] Credits
- [] Title
- [] Grade Basis
- [] Course Description
- [x] Cross-Listed/Stacked
- [] Test Score Prerequisites
- [] Course Prerequisites
- [] Co-requisites
- [] Registration Restrictions
- [] Class
- [] Level
- [] College
- [] Major
- [] Other
(please specify)

9. Repeat Status No
- [] # of Repeats
- [] Max Credits

10. Grading Basis
- [x] A-F
- [] P/NP
- [] NG

11. Implementation Date
- Semester/Year
 - From: Spring/2013
 - To: 99/9999

12. Cross Listed with
- []

13a. Impacted Courses or Programs:
- List any programs or college requirements that require this course.
- Please type into fields provided in table. If more than three entries, submit a separate table. A template is available at www.uaa.alaska.edu/governance.

<table>
<thead>
<tr>
<th>Impacted Program/Course</th>
<th>Catalog Page(s) Impacted</th>
<th>Date of Coordination</th>
<th>Chair/Coordinator Contacted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civil Engineering, BS</td>
<td>238, 352, 355</td>
<td>9/30/11</td>
<td>Osama Abaza</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Initiator Name (typed): Osama Abaza

Initiator Signed Initials: _________ Date:________________

13b. Coordination Email
- Date: 1/10/2012
- submitted to Faculty Listserv: (uaa-faculty@lists.uaa.alaska.edu)

13c. Coordination with Library Liaison
- Date: 1/10/2012

14. General Education Requirement
Mark appropriate box:
- [] Oral Communication
- [] Written Communication
- [] Quantitative Skills
- [] Humanities
- [] Fine Arts
- [] Social Sciences
- [] Natural Sciences
- [x] Integrative Capstone

15. Course Description (suggested length 20 to 50 words)
Integrated capstone course for civil engineering students to collaborate in multidisciplinary teams to design a complex civil engineering system that meets client needs while protecting public health and safety. Students apply knowledge and skills learned in their undergraduate curriculum.

16a. Co-requirement(s) (list prefix and number)
CE A344 or CE A405 or CE A422 or CE A432 or CE A433 or CE A442

16b. Test Score(s)
- [] N/A

16c. Co-requisite(s) (concurrent enrollment required)
- [] N/A

16d. Other Restriction(s)
- [] College
- [] Major
- [] Class
- [x] Level

16e. Registration Restriction(s) (non-codable)
- [] Senior Status

17. Mark if course has fees

18. Mark if course is a selected topic course

19. Justification for Action
The course requires design activities; the change is to give students experience in a prior design course satisfying the integrated capstone course requirements.

Initiator (faculty only)
- [] Approved
- [] Disapproved

Initiator (TYPE NAME)
- [] Approved
- [] Disapproved

Dean/Director of School/College
- [] Approved
- [] Disapproved

Undergraduate/Graduate Academic Board Chairperson
- [] Approved
- [] Disapproved

Provost or Designee
- [] Approved
- [] Disapproved

Curriculum Committee Chairperson
- [] Approved
- [] Disapproved

Department Chairperson
- [] Approved
- [] Disapproved

Initiator Name (typed): Osama Abaza

Initiator Signed Initials: _________ Date:________________

Mark if course has fees
- []

Mark if course is a selected topic course
- []

Justification for Action
The course requires design activities; the change is to give students experience in a prior design course satisfying the integrated capstone course requirements.

Initiator Name (typed): Osama Abaza

Initiator Signed Initials: _________ Date:________________

Mark if course has fees
- []

Mark if course is a selected topic course
- []

Justification for Action
The course requires design activities; the change is to give students experience in a prior design course satisfying the integrated capstone course requirements.

Initiator Name (typed): Osama Abaza

Initiator Signed Initials: _________ Date:________________

Mark if course has fees
- []

Mark if course is a selected topic course
- []

Justification for Action
The course requires design activities; the change is to give students experience in a prior design course satisfying the integrated capstone course requirements.

Initiator Name (typed): Osama Abaza

Initiator Signed Initials: _________ Date:________________

Mark if course has fees
- []

Mark if course is a selected topic course
- []

Justification for Action
The course requires design activities; the change is to give students experience in a prior design course satisfying the integrated capstone course requirements.

Initiator Name (typed): Osama Abaza

Initiator Signed Initials: _________ Date:________________

Mark if course has fees
- []

Mark if course is a selected topic course
- []

Justification for Action
The course requires design activities; the change is to give students experience in a prior design course satisfying the integrated capstone course requirements.

Initiator Name (typed): Osama Abaza

Initiator Signed Initials: _________ Date:________________

Mark if course has fees
- []

Mark if course is a selected topic course
- []

Justification for Action
The course requires design activities; the change is to give students experience in a prior design course satisfying the integrated capstone course requirements.

Initiator Name (typed): Osama Abaza

Initiator Signed Initials: _________ Date:________________

Mark if course has fees
- []

Mark if course is a selected topic course
- []

Justification for Action
The course requires design activities; the change is to give students experience in a prior design course satisfying the integrated capstone course requirements.

Initiator Name (typed): Osama Abaza

Initiator Signed Initials: _________ Date:________________

Mark if course has fees
- []

Mark if course is a selected topic course
- []

Justification for Action
The course requires design activities; the change is to give students experience in a prior design course satisfying the integrated capstone course requirements.

Initiator Name (typed): Osama Abaza

Initiator Signed Initials: _________ Date:________________

Mark if course has fees
- []

Mark if course is a selected topic course
- []

Justification for Action
The course requires design activities; the change is to give students experience in a prior design course satisfying the integrated capstone course requirements.

Initiator Name (typed): Osama Abaza

Initiator Signed Initials: _________ Date:________________

Mark if course has fees
- []

Mark if course is a selected topic course
- []

Justification for Action
The course requires design activities; the change is to give students experience in a prior design course satisfying the integrated capstone course requirements.

Initiator Name (typed): Osama Abaza

Initiator Signed Initials: _________ Date:________________

Mark if course has fees
- []

Mark if course is a selected topic course
- []

Justification for Action
The course requires design activities; the change is to give students experience in a prior design course satisfying the integrated capstone course requirements.

Initiator Name (typed): Osama Abaza

Initiator Signed Initials: _________ Date:________________

Mark if course has fees
- []

Mark if course is a selected topic course
- []

Justification for Action
The course requires design activities; the change is to give students experience in a prior design course satisfying the integrated capstone course requirements.

Initiator Name (typed): Osama Abaza

Initiator Signed Initials: _________ Date:________________

Mark if course has fees
- []

Mark if course is a selected topic course
- []

Justification for Action
The course requires design activities; the change is to give students experience in a prior design course satisfying the integrated capstone course requirements.

Initiator Name (typed): Osama Abaza

Initiator Signed Initials: _________ Date:________________

Mark if course has fees
- []

Mark if course is a selected topic course
- []

Justification for Action
The course requires design activities; the change is to give students experience in a prior design course satisfying the integrated capstone course requirements.

Initiator Name (typed): Osama Abaza

Initiator Signed Initials: _________ Date:________________

Mark if course has fees
- []

Mark if course is a selected topic course
- []

Justification for Action
The course requires design activities; the change is to give students experience in a prior design course satisfying the integrated capstone course requirements.

Initiator Name (typed): Osama Abaza

Initiator Signed Initials: _________ Date:________________

Mark if course has fees
- []

Mark if course is a selected topic course
- []

Justification for Action
The course requires design activities; the change is to give students experience in a prior design course satisfying the integrated capstone course requirements.

Initiator Name (typed): Osama Abaza

Initiator Signed Initials: _________ Date:________________

Mark if course has fees
- []

Mark if course is a selected topic course
- []

Justification for Action
The course requires design activities; the change is to give students experience in a prior design course satisfying the integrated capstone course requirements.

Initiator Name (typed): Osama Abaza

Initiator Signed Initials: _________ Date:________________

Mark if course has fees
- []

Mark if course is a selected topic course
- []

Justification for Action
The course requires design activities; the change is to give students experience in a prior design course satisfying the integrated capstone course requirements.

Initiator Name (typed): Osama Abaza

Initiator Signed Initials: _________ Date:________________

Mark if course has fees
- []

Mark if course is a selected topic course
- []

Justification for Action
The course requires design activities; the change is to give students experience in a prior design course satisfying the integrated capstone course requirements.

Initiator Name (typed): Osama Abaza

Initiator Signed Initials: _________ Date:________________

Mark if course has fees
- []

Mark if course is a selected topic course
- []

Justification for Action
The course requires design activities; the change is to give students experience in a prior design course satisfying the integrated capstone course requirements.
Date: December 12, 2011
Course Title: Design of Civil Engineering Systems
Course Number: CE A438
Program: Civil Engineering
Credits: 3.0

I. Course Description:
Integrated capstone course for civil engineering students to collaborate in multidisciplinary teams to design a complex civil engineering system that meets client needs while protecting public health and safety. Students apply knowledge and skills learned in their undergraduate curriculum.

II. Course Design:
A. Course Intent: Provide civil engineering undergraduate students with a capstone design experience and present information important to employment and success as a professional engineer in practice
B. Course Credits: Four (4.0)
C. Total time of student involvement:
 1. Lecture hours per week: 4
 2. Average laboratory hours per week: None
 3. Total time of work expected outside class: 5 to 8 hours per week.
D. Degree Program Status: Required for undergraduate civil engineering students
E. Grading: A-F.
F. Fees: None.
G. Previous Course: None
H. Time Frame: Standard semester
I. Coordination with other schools or colleges: SOE and list serve
J. Prerequisites: CE A344 or CE A405 or CE A422 or CE A432 or CE A433 or CE A442.
K. Course Activities: The course will fulfill the integrated GER capstone requirements. Students work together in teams to design a large scale civil engineering system to meet the needs of a client. Efforts are made to secure a client that is willing to provide the support of the design engineering organization that will eventually finalize the project. In addition to the project, weekly lectures cover general topics of concern to practicing engineers. Half of the lecture time is spent covering topics listed in the course outline. The remaining time is spent in a student staff meeting to discuss the project and its progress.
L. Course Level Justification:
Students are required to apply knowledge from courses completed in the 3rd year of an ABET accredited civil engineering Bachelor of Science degree program.

III. Course Outline:
A. Introduction to the project
B. How to look for a job
C. Team concepts and team building
D. Construction drawings
E. Specification writing
F. Design codes, regulations, regulators
G. Project management
H. Safety considerations in civil design
I. Legal consideration in civil design
J. Professional registration and the business of civil engineering
K. Engineering ethics
L. Public and professional presentations
IV. Instructional Goals, Student Learning Outcomes, and Assessment Methods

A. Instructional Goals:

The instructor will:
1. Guide students to apply concepts, principles, and skills learned in the undergraduate civil engineering students curriculum, and
2. Introduce various aspects of professional practice to senior civil engineering students for professional practice.

B. Student Learning Outcomes and Assessment Methods:

<table>
<thead>
<tr>
<th>Student Learning Outcomes: After successful completion of course students will be able to</th>
<th>Assessment Methods</th>
<th>Integrated Capstone GER outcome fulfilled</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Identify problems and opportunities, develop related engineering design criteria, and formulate alternative solutions to meet client needs while protecting public health and safety.</td>
<td>Faculty and client evaluations, oral presentations, and final reports.</td>
<td>integration of civil engineering knowledge in project planning and analysis.</td>
</tr>
<tr>
<td>2. Apply knowledge and skills learned in the civil engineering undergraduate curriculum.</td>
<td>Homework assignments, and final project.</td>
<td>Knowledge integration in civil engineering area.</td>
</tr>
<tr>
<td>3. Function effectively on multi-disciplinary teams to collaborate on iterative design of a complex civil engineering system with conflicting technical, social, economic, and aesthetic objectives and final reports. Peer evaluations of team performance.</td>
<td>Faculty evaluation and final oral presentations.</td>
<td>Critical thinking and quantitative analysis skills.</td>
</tr>
<tr>
<td>4. Demonstrate professional, legal, and responsibilities of practicing civil engineers.</td>
<td>Faculty and client evaluations, oral presentations, and final reports.</td>
<td>Knowledge integration. Communication.</td>
</tr>
<tr>
<td>5. Demonstrate ability to engage in life-long learning in the context of civil engineering professional practice.</td>
<td>Faculty evaluation of work products.</td>
<td>Knowledge integration in civil engineering area and information literacy.</td>
</tr>
<tr>
<td>6. Communicate effectively with engineering drawings and technical visualizations, construction specifications, written technical reports, and public oral presentations.</td>
<td>Faculty and client evaluations, oral presentations, and final reports.</td>
<td>Effective communication, that demonstrate student achievements.</td>
</tr>
</tbody>
</table>

V. Suggested Texts:

Students will use a variety of reference materials, codes, and regulations that are applicable to the project of the year.

VI. References/Bibliography:

American Concrete Institute (2011). Building Code Requirements for Structural Concrete (ACI 318-11), Farmington Hills, MI: ACI.

VII. Course Rubrics
CE A438 Civil Engineering Systems - Course Outcome #1

Course Outcome #1: Identify problems and opportunities, develop related engineering design criteria, and formulate alternative solutions to meet client needs while protecting public health and safety

1. Outcomes Rubric

Three performance criteria are adopted for these course outcomes. These three performance criteria are selected according to Bloom and Krathwohl Definitions of Levels as shown in Table 1. Table 2 shows the curriculum map and weights of the different program outcomes for CE A438.

Table 1: Rubric for outcomes 1

<table>
<thead>
<tr>
<th>Performance Criteria</th>
<th>Unsatisfactory</th>
<th>Developing</th>
<th>Satisfactory</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Identify problems and develop design criteria (C')</td>
<td>Fails to identify problems for the case under consideration (project)</td>
<td>Shows limited ability in identification of the problem</td>
<td>Able to identify problem and develop a criteria for design</td>
<td>Able to identify all problems related to the case and develop criteria for the design</td>
</tr>
<tr>
<td>2. Apply basic engineering principles to set alternatives (A)</td>
<td>Fails to apply knowledge gained in the CE program to set alternatives</td>
<td>Limited ability to apply knowledge gained in the CE program to set alternatives</td>
<td>Able to apply knowledge gained in the CE program to set alternatives</td>
<td>Able to apply knowledge gained in the CE program to set alternatives for each problem encountered</td>
</tr>
<tr>
<td>3. Provide the basic ability to apply the criteria set in choosing the proper alternative to meet client needs while protecting public health and safety (S)</td>
<td>Has difficulty understanding of how to select an alternative</td>
<td>Able to have some understanding of how to select alternative</td>
<td>Able to understand the selection of proper alternative</td>
<td>Able to understand the selection of proper alternative and setting valid rational for it</td>
</tr>
</tbody>
</table>

*C – Comprehension A – Application $ – Synthesis
CE A438 Civil Engineering Systems - Course Outcome #2

Course Outcome #2: Apply knowledge and skills learned in the civil engineering undergraduate curriculum

1. Outcomes Rubric

Three performance criteria are adopted for these course outcomes. These three performance criteria are selected according to Bloom and Krathwohl Definitions of Levels as shown in Table 1. Table 2 shows the curriculum map and weights of the different program outcomes for CE A438.

Table 1: Rubric for outcomes 2

<table>
<thead>
<tr>
<th>Performance Criteria</th>
<th>Unsatisfactory</th>
<th>Developing</th>
<th>Satisfactory</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Identify the basic areas in CE program and the associated knowledge needed in</td>
<td>Fails to identify the areas</td>
<td>Limited ability in identifying the areas</td>
<td>Able to identify the areas of program and the knowledge needed</td>
<td>Able to identify the areas of program and the knowledge needed for each element in the project</td>
</tr>
<tr>
<td>the project under consideration (C*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Apply the basic skills in the project subject area (A)</td>
<td>Fails to apply any skills</td>
<td>Limited ability in applying a skill</td>
<td>Able to apply skills for some areas of the project</td>
<td>Able to apply skills for all areas of the project</td>
</tr>
<tr>
<td>3. Provide an integrated solutions using the knowledge and skills learned in the</td>
<td>Fails provide integrate</td>
<td>Has difficulty providing such solution's</td>
<td>Able to provide a solution</td>
<td>Able to provide more than one solution</td>
</tr>
<tr>
<td>CE program (S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*C – Comprehension, A – Application, S – Synthesis
Course Outcome #3: Function effectively on multi-disciplinary teams to collaborate on iterative design of a complex civil engineering system with conflicting technical, social, economic, and aesthetic objectives.

1. Outcomes Rubric

Three performance criteria are adopted for these course outcomes. These three performance criteria are selected according to Bloom and Krathwohl Definitions of Levels as shown in Table 1. Table 2 shows the curriculum map and weights of the different program outcomes for CE A438.

<table>
<thead>
<tr>
<th>Performance Criteria</th>
<th>Unsatisfactory</th>
<th>Developing</th>
<th>Satisfactory</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Identify the main tasks to be implemented by the team (C')</td>
<td>Fails to identify</td>
<td>Limited ability in identifying the tasks</td>
<td>Able to identify tasks</td>
<td>Able to identify the tasks and relate those tasks to project objectives</td>
</tr>
<tr>
<td>2. Apply management skills in implementing the tasks and communicate with team members (A)</td>
<td>Fails to apply any management skills</td>
<td>Limited ability in applying management skills</td>
<td>Able to apply management skills and communicate with team members</td>
<td>Able to apply the management skills and take the responsibility to communicate with team members</td>
</tr>
<tr>
<td>3. Provide feedback to the team in timely manner (S)</td>
<td>Fails to provide feedback</td>
<td>Has difficulty to provide feedback</td>
<td>Able to provide feedback in timely manner</td>
<td>Able to provide feedback in timely manner throughout the project</td>
</tr>
</tbody>
</table>

C – Comprehension A – Application S – Synthesis
Course Outcome # 4: Demonstrate profession, legal, and ethical responsibilities of practicing civil engineers;

Course Outcome # 5: Demonstrate ability to engage in life-long learning in the context of civil engineering professional practice

1. Outcomes Rubric
Three performance criteria are adopted for these course outcomes. These three performance criteria are selected according to Bloom and Krathwohl Definitions of Levels as shown in Table1. Table 2 shows the curriculum map and weights of the different program outcomes for CE A438.

<table>
<thead>
<tr>
<th>Performance Criteria</th>
<th>Unsatisfactory</th>
<th>Developing</th>
<th>Satisfactory</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Identify profession, legal, and ethical responsibilities (C)</td>
<td>Fails to identify</td>
<td>Present limited ability</td>
<td>Able to identify the basic profession, legal, and ethical responsibilities</td>
<td>Able to identify the basic profession, legal, and ethical responsibilities in the project under consideration</td>
</tr>
<tr>
<td>2. Apply judgment in dealing with profession, legal, and ethical responsibilities (A)</td>
<td>Fails to apply</td>
<td>Limited ability in applying</td>
<td>Able to apply some issues in the project under consideration</td>
<td>Able to apply all relevant issues in the project under consideration</td>
</tr>
<tr>
<td>3. Provide a plan to engage in life-long learning (S)</td>
<td>Fails to provide</td>
<td>Has difficulty in planning his/her future professional progress</td>
<td>Able to present future plans for continuing education or licensure, etc.</td>
<td>Able to present a plan for future development with specific time frame</td>
</tr>
</tbody>
</table>

C – Comprehension A- Application S – Synthesis
CE A438 Civil Engineering Systems - Course Outcome #6

Course Outcome # 6: Communicate effectively with engineering drawings and technical visualizations, construction specifications, written technical reports, and public oral presentations;

1. Outcomes Rubric

Three performance criteria are adopted for these course outcomes. These three performance criteria are selected according to Bloom and Krathwohl Definitions of Levels as shown in Table1. Table 2 shows the curriculum map and weights of the different program outcomes for CE A438.

Table 1: Rubric for outcomes 6

<table>
<thead>
<tr>
<th>Performance Criteria</th>
<th>Unsatisfactory</th>
<th>Developing</th>
<th>Satisfactory</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Identify project elements (C)</td>
<td>Fails to identify any elements</td>
<td>Limited ability in identification of project elements</td>
<td>Able to identify some project elements</td>
<td>Able to identify all elements</td>
</tr>
<tr>
<td>2. Evaluate project alternatives, and specifications (A)</td>
<td>Fails to evaluate</td>
<td>Limited ability in the evaluation of alternatives, and specifications</td>
<td>Able to evaluate alternatives, and specifications in one of the project field</td>
<td>Able to evaluate alternatives, and specifications in two or more fields</td>
</tr>
<tr>
<td>3. A. Provide DSR and project plans B. Present work to an audience (S)</td>
<td>Fails to provide</td>
<td>Limited ability in providing basic design outputs</td>
<td>Able to provide all outputs</td>
<td>Able to provide all outputs in a professional manner</td>
</tr>
</tbody>
</table>

*C – Comprehension A- Application S – Synthesis
<table>
<thead>
<tr>
<th>Course Outcome</th>
<th>Interpreting the outcome evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. An ability to apply knowledge of mathematics through differential equations, probability and statistics, calculus-based physics, and general chemistry.</td>
<td>Below expectations (0 - 0.9)</td>
</tr>
<tr>
<td>2. An ability to apply knowledge in a minimum of four (4) recognized major civil engineering areas with emphasis on civil infrastructure applications.</td>
<td>Acceptable (1 - 1.9)</td>
</tr>
<tr>
<td>3. An ability to design and conduct experiments, as well as to analyze and interpret data in more than one of the recognized major civil engineering areas.</td>
<td>Above expectations (2 - 3.9)</td>
</tr>
<tr>
<td>4. An ability to design a civil engineering system, component, or process to meet desired needs including economic ability and equity.</td>
<td>Exemplary (4 - 5)</td>
</tr>
<tr>
<td>5. An ability to function in civil engineering multi-disciplinary teams.</td>
<td></td>
</tr>
<tr>
<td>6. An ability to identify, formulate, and solve engineering problems.</td>
<td></td>
</tr>
<tr>
<td>7. An understanding of professional, legal, and ethical responsibilities.</td>
<td></td>
</tr>
<tr>
<td>8. An ability to communicate effectively using written, verbal, visual, and graphic skills.</td>
<td></td>
</tr>
<tr>
<td>9. The broad education necessary to understand the impact of engineering solutions in a global and societal context.</td>
<td></td>
</tr>
<tr>
<td>10. A recognition of the need for, and an ability to engage in lifelong learning.</td>
<td></td>
</tr>
<tr>
<td>11. A knowledge of contemporary issues in professional practice.</td>
<td></td>
</tr>
<tr>
<td>12. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice and preparation for advanced study.</td>
<td></td>
</tr>
</tbody>
</table>
UAA Table of GER Substitutions

<table>
<thead>
<tr>
<th>UAA Courses</th>
<th>UAF Courses</th>
<th>UAS Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 1: Basic College-Level Skills</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral Communications Skills — 3 Credits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantitative Skills — 3 Credits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Written Communication Skills — 6 Credits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL A111, A211, A212, A213, A214, A311, A312, A414</td>
<td>ENGL F111X, F211X, F213X</td>
<td>ENGL S111, S211, S212</td>
</tr>
<tr>
<td>Tier 2: Disciplinary Areas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fine Arts — 3 Credits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AKNS A215 • ART A160, A261, A262, A360A, A360B • DNCE A170 • MUS A215, A121, A124, A221, A222 • THR A111, A311, A312, A411, A412</td>
<td>ANS F202X • ART F200X • HUM F201X • MUS F200X • THR F200X</td>
<td>ART S160, S261, S262 • MUS S123 • THR S111, S211, S212</td>
</tr>
<tr>
<td>Humanities — 6 Credits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Sciences — 7 Credits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Laboratory Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASTR A103, A104 • BIOL A102, A178, A200 • CHEM A103, A104, A105, A106 • CPLX A200 • ENVY A211 • GEOG A111 • GEOL A115, A178 • PHYS A123, A124, A211, A212</td>
<td>ANTH F211X • GEOG F111X • GEOS F106X</td>
<td>ANTH S205 • ASTR S225 • CHEM S100 • GEOS S205 • GEOL S105 • OCN S101 • PHIL S206</td>
</tr>
<tr>
<td>Social Sciences — 6 Credits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANTH A101, A200, A202, A250 • BA A151 • CEL A292 • ECON A123, A201, A202, A210 • ENVY A212 • GEOG A101 • HNRS A292 • HS A220 • HUMS A106 • INTL A101 • JPC A101 • JUST A110, A251, A330, A375 • LSSS A111 • PARL A101 • PS A101, A102, A311, A351 • PSY A111, A150 • SOC A101, A110, A201, A202, A251, A351 • SWK A106, A243 • WS A200</td>
<td>ANTH F100X • ECON F100X • PS F100X, F300X • SOC F100X</td>
<td>ANTH S101, S202, S211 • ECON S100, S201, S202 • GEOG S101 • HIST S105, S106, S131, S132 • PSY S101, S250 • SOC S101, S201</td>
</tr>
</tbody>
</table>
1. I compared the table with the ones from the UAF and UAS catalogs and found a few differences. Assuming the UAF and UAS catalogs are correct, we may need to make a few corrections on the UAA table. I have noted these with red font and notes for the affected spreadsheet cells and also listed here:
 1. COMM F300X is a Humanities course and not an Oral Communications course. Moved.
 2. The last 3 courses listed as UAA quantitative skills should have a STAT prefix. Changed.
 3. Under UAF natural sciences, GEOG F111X should be GEOG F211X and GEOS F106X should not be present.
 1. GEOG F111X appears under this title in the UAF catalog course descriptions and Core section, however their Substitution Table lists it as F211X.
 2. GEOS F106X does not appear in the Substitution Table, but is listed as meeting Natural Sciences in the Core section of the catalog, and has a X suffix, indicating that it meets core.

4. Under UAS natural sciences, ENVS S102 should be ENVS S101 and GEOG S102 should not be present.
 1. ENVS S102 is listed as such in the UAS Catalog GER section and Course Descriptions. Also listed in the UAF Substitution Table.
 2. GEOG S102 is included in the UAS Catalog GER section under Lab Natural Science.
 3. ANTH S205 is Natural Science GER at UAS but is not GER, per catalog, at UAA and is ANTH F221 listed as a non-lab GER in UAS’s Table of Subs from UAF

2. The table isn’t as easy to read as the UAS and UAF tables. Is it necessary to use the prefix for each course, or could you put multiple courses with the same prefix on one line? I realize part of this may be to avoid misinterpretation by students.
 1. Please see version 2 of the UAA Substitution table to see this broken out.
 2. Cross-listed courses have been broken apart to avoid confusion, and to keep all courses alphabetical.

3. Also, we noted the UAS table separates out the natural science lab courses from the non-lab courses and thought that was a nice touch. Labeling the UAS column to delineate that (laboratory courses and non-laboratory courses) would be helpful, since that cells looks like it is un-alphabetical as it, and separating out UAA’s courses as lab and non-lab in a similar manner might be nice.
 1. Refer to version 2 of the UAA Substitution table to see this broken out. Please note, we do not list in this way in the GER section of the UAA Catalog- all Natural Science courses are grouped together, with a note stating that a lab course is required.

4. Some sort of narrative explanation of the table should be included in the catalog. Last week we approved catalog copy revision to include BOR policy quote on Gen Ed transfers between MAUs and I assumed the table would fit in there somewhere. We also thought of a couple of sentences that might be helpful to students:
 1. NOTE: Some non-GER courses at other UA system universities may transfer to UAA as GER courses if they are an exact match. In these cases GER credit will be awarded.
 2. (This is revised from the UAS catalog:) Please refer to the GER Substitution Table if you are considering taking a class from UAS and/or UAF to fulfill a GER requirement at UAA.
 1. The Evaluations team really does not feel that we have the authority to write catalog copy for this section. We do agree with the need for it to be there though.